
Monero Bulletproofs+ Security Audit

Version 1.0

February 10, 2021

Prepared for:

Monero Research Lab

Prepared by:

Suyash Bagad Omer Shlomovits Claudio Orlandi

ZenGo X

© ZenGo X

Prepared by ZenGo X for Monero Research Lab. Portions of this document and the templates used
in its production are the property of ZenGo X and cannot be copied (in full or in part) without
ZenGo X permission.

While precautions have been taken in the preparation of this document, ZenGo X the publisher,
and the author(s) assume no responsibility for errors, omissions, or for damages resulting from the
use of the information contained herein.

1



Monero Bulletproofs+ Security Audit

Contents

1 Executive Summary 3
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Context 5
2.1 Role of Bulletproofs+ in Monero . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Paper Review 7
3.1 Summary of the Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 On Proof Malleability and Transferability . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 On the correctness of Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Code Overview 10
4.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Prover’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Verifier’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Vulnerabilities 24
5.1 Missing ‘point at infinity’ check on group elements . . . . . . . . . . . . . . . . . . 24
5.2 Missing check if challenge ‘e’ is 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Weaknesses 26
6.1 Inconsistency in verifier transcript computation . . . . . . . . . . . . . . . . . . . . 26
6.2 Incomplete condition for checking ‘power of two’ . . . . . . . . . . . . . . . . . . . 26
6.3 Input parameter edge case consideration in vector of scalar powers() . . . . . . 27
6.4 Redundant Assertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Caution on usage of amount commitments outside Bulletproofs+ . . . . . . . . . . 29

7 Code Improvements 30
7.1 Reduction in field multiplications in compute LR() . . . . . . . . . . . . . . . . . . 30
7.2 Redundant loop and copy before inner-product rounds . . . . . . . . . . . . . . . . 31

References 32

Contents 2



Monero Bulletproofs+ Security Audit

1 Executive Summary

The Monero Research Lab announced [11] the implementation of Bulletproofs+ [5], a zero-knowledge
proving system set to be used for range proofs in Monero. The Bulletproofs+ framework is planned
to replace the existing Bulletproofs zero-knowledge proving system for range proofs. The Bullet-
proofs+ protocol ensures smaller proof sizes, faster proof generation as well as faster verification
with aggregation of multiple proofs. This would result in lighter transactions on the Monero
blockchain, faster generation in wallets and also enable faster verification on the end of the net-
work participants.

This report describes the results of the security assessment of Monero’s implementation of Bullet-
proofs+ by ZenGo X. The review of Monero’s Bulletproofs+ was conducted between January 17
and February 10, 20211 for a total of 40 man-days of study.

1.1 Scope

We perform a cryptographic and security assessment of the Bulletproofs+ protocol specific to the
Monero blockchain. The goal of this audit was to assess the readiness of Monero’s implementation
of Bulletproofs+ as a drop-in replacement to the existing range proof protocol Bulletproofs in
Monero. We covered the following points as a part of the audit:

1. A full review of the e-print (url: https://eprint.iacr.org/2020/735, version: 17th June,
2020) of the paper with focus on the soundness of the scheme. Note that at the time of
writing this report, the paper is not yet published in a peer-reviewed conference or journal.

2. Verifying that the implementation correctly reflected the prover and verifier algorithms de-
scribed in the original e-print and finding vulnerabilities by code review, manual testing and
fuzzing. In particular, we focused on checking if the code:

(i) allows an attacker to generate a false proof that the verify algorithm deems as correct,

(ii) leaks any information to an attacker from examining the proof(s) generated by honest
prover(s),

(iii) behaves correctly from a logical and an implementation point of view, including the
underlying elliptic curve arithmetic used.

The details of the review target are:

Language C++

Repository https://github.com/SarangNoether/monero

Branch bp-plus

Commit 7f964dfc8f15145e364ae4763c49026a3fab985d

Files src/ringct/bulletproofs.h, src/ringct/bulletproofs.cc,

test modules and other relevant files in the directory src/ringct

We also used an independent Rust implementation [8] of the Bulletproofs+ protocol from the origi-
nal authors of the paper to provide an extra layer of validation. Although the Monero implementa-
tion greatly differs from the authors’ Rust implementation attributing to some key optimisations,
the core algorithms in both the implementations are similar. A notable difference, however, is
that the Rust implementation’s verification only verifies aggregated range proofs while the Monero
implementation supports batched verification of multiple aggregated range proofs. 2

1Note that we are releasing the first version of this report on February 10, 2021. Final version is planned to be
released on February 17, 2021.

2By aggregated range proof, we mean a single BulletproofPlus proof for proving that multiple amounts lie in
the range [0, 264 − 1]. By batch verification, we mean mutliple individual BulletproofPlus proofs to be verified
using a single multi-sclar multiplication.
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1.2 Key Findings

We summarise the issues we found in the following table. Overall, the code is well documented
and very closely follows the structure of the Bulletproofs implementation for Monero. Because the
formulation of Bulletproofs+ is based on Bulletproofs, there are notable similarities in both of their
implementations. We have analysed the Bulletproofs audit reports [13, 15] and ensured that the
issues from Bulletproofs relevant to Bulletproofs+ have been taken care of. As an outcome of this
audit, we did not find any critical issues and none of the high-severity issues were discovered to be
practically exploitable.

Class Issue Severity
Difficulty
to trigger

Difficulty
to exploit

C
ry

p
to

gr
ap

h
y

Missing ‘point at infinity’ check on the group el-
ements of a BulletproofPlus proof after scalar
multiplication by 8. (§ 5.1)

Inconsistency in verifier transcript computation:
verifier challenges should be computed after mul-
tiplication of group elements by 8. (§ 6.1)

Unknown

Caution on usage of amount commitments V ∈
Gm
l outside Bulletproofs+. (§ 6.5)

Unknown

D
a
ta

va
li

d
at

io
n

Missing check if challenge ‘e’ is zero. (§ 5.2) Unknown

Incomplete condition for checking ‘power of two’
in a couple of helper functions. (§ 6.2)

Unknown

Input parameter validation in
vector of scalar powers(); an error must be
thrown if the paramter n = 0. (§ 6.3)

Unknown

Redundant assertions in some places which
should either be changed or removed. (§ 6.4)

NA Unknown

Index: Critical High Medium Low Informational

We classify the concerns emerged from the evaluation work into three categories:

• Vulnerabilities (§ 5): These are critical or high-severity bugs which should be fixed in priority.

• Weaknesses (§ 6): We refer to issues that would not result in breaking of the system but consist
of insufficient input validation or lack of consideration of all edge cases, as weaknesses.

• Improvements (§ 7): These are findings which would lead to a better and modular code base,
they consist of some simplifications and some performance improvements.

Note: The references for the Straus, Pippenger and scalar inversion algorithms were absent in the
codebase.
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2 Context

On December 18, 2020, Dr. Sarang Noether of the Monero Research Lab announced the com-
pletion of Bulletproofs+ implementation for Monero in the Monero Research Lab’s IRC channel
[12]. Following, the authors submitted a Community Crowdfunding System (CCS) proposal on
December 22, 2020 to audit the Bulletproofs+ implementation [1], which was accepted on January
15, 2020 by Monero Research Lab. The proposal was subsequently funded by the community in a
couple of days and the audit process began on January 17, 2020.

2.1 Role of Bulletproofs+ in Monero

Bulletproofs+ is a zero-knowledge range proof protocol which builds on the Bulletproofs protocol.
It does not require any trusted setup similar to that of Bulletproofs. Using Bulletproofs+, we can
prove that an integer a ∈ Zp lies in a finite range of the form [0, 2n), where Zp is a finite field with a
prime order p. The key idea of both Bulletproofs+ and Bulletproofs is proving that a given integer
can be represented in a maximum of n bits and each of those n bits is either 0 or 1. Bulletproofs
uses the inner product argument to construct a range proof. An inner product argument proves
the knowledge of two vectors a,b ∈ Znp given the following

(i) vector commitment to them V = gα · ga · hb ∈ Gl, g,h ∈ Gn
l and α ∈ Zp, g ∈ Gl

3

(ii) inner product c = 〈a,b〉 ∈ Zp

where Gl is the prime order group and we assume that the discrete logarithmic relation between the
elements of g and h is unknown. On the other hand, Bulletproofs+ uses a weighted inner product
argument of the form c = 〈a,−→y n ◦ b〉 where −→y n =

(
y, y2, . . . , yn

)
, y ∈ Zp. Using the weighted

inner product argument, Bulletproofs+ succeeds in reducing the proof size of Bulletproofs by 3
elements, i.e. for a 64-bit range proof, a Bulletproofs+ proof is about 15% smaller than that of a
Bulletproofs proof.

In the context of Monero, the input and output amounts are hidden in Pedersen commitments, so
its necessary for the owners to prove that the amounts hidden in those commitments are in the
range [0, 264−1]. This ensures that the user cannot create funds out of thin air by wrapping around
the amount modulo p and balancing the input-output amounts in a malicious way. Currently, in
Monero, a single aggregated Bulletproofs proof is used to prove that every output in a transaction
hides an amount in the range [0, 264 − 1]. For every transaction, irrespective of the number of
outputs created, Bulletproofs+ would require 96 bytes lesser than that of Bulletproofs. For the
most common 2-output transactions seen in Monero, the following table shows the proof size
improvements.

Spent inputs Current size New size % Reduction

1 1.42 kB 1.33 kB 6.6%

1 1.92 kB 1.83 kB 5.1%

Table 1: Proof size benefits of Bulletproofs+

Moreover, the proof generation and verification of Bulletproofs+ is also faster than that of Bullet-
proofs. Bulletproofs+ proofs are generated with a 10% speedup as compared to that of Bulletproofs.
Proofs are generated typically in a user’s wallet and so do not directly affect the computation on
the blockchain. In spite of this, faster proof generation reduces computation overhead in the wallets
and helps faster transaction creation.

3We have used multiplicative notation for group operations here for brevity. In the following chapters, we use the
usual additive notation.
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Proof verification times are more crucial because the proofs need to be verified on-chain by miners
and other network participants. Bulletproofs+ proof verification is marginally faster than Bullet-
proofs for single amount range proofs. However, similar to Bulletproofs, multiple Bulletproofs+

proofs can be verified in batches much more efficiently than doing so individually. The following
table shows the percent reduction in verification time between the Bulletproofs and Bulletproofs+

algorithms for proofs comprising different numbers of outputs [11].

Outputs per proof Single proofs, % faster Batched proofs, % faster

2 1.5% 5.3%

4 0.5% 9.2%

8 1.6% 9.2%

16 0.9% 10.8%

Table 2: Verification speedup of Bulletproofs+ over Bulletproofs

The proof size directly impacts the space used on the blockchain while the verification times greatly
affect on-chain computation. We see that the proof size reduction as well as verification speedup
from using Bulletproofs+ over Bulletproofs clearly motivate the incorporation of Bulletproofs+ in
Monero.

2 Context 6
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3 Paper Review

As a part of this audit, we present a formal review of the e-print of the Bulletproofs+ paper [5]
(version: 17 June, 2020) in this section. Note that at the time of writing of this report, the
Bulletproofs+ paper is not yet published in a peer-reviewed conference or journal. To this end,
we aim to verify that the main protocol and the accompanying proofs are theoretically correct.
Moreover, our focus was to check the completeness, soundness and zero-knowledge properties of
the argument systems in the paper and spot any anomalies that could cause potential issues in a
production-level implementation.

3.1 Summary of the Review

This paper contains an improved version of the Bulletproofs Zero-Knowledge Argument System
[4]. The efficiency improvements as claimed appear somewhat marginal compared to the original
paper. The paper is overall not very well written: the “prose” contains many grammatical errors
and it is at times hard to follow. The technical parts, including the proofs, contain minor errors
(e.g. few wrong indices, some wrong but easily fixable mathematical expression, typos, etc.) which
do not however seem to undermine the main claims of the paper.

The Zero-Knowledge (ZK) Argument for the weighted-inner product (WIP) relation (Section
3, Figure 1) closely follows the “Improved Inner-Product Argument” (Section 3 in the original
Bulletproof paper) with the two main differences.

1. The new protocol already incorporates the “weight” vector y,

2. the WIP protocol is designed to be zero-knowledge.

The protocol in Figure 1 does not appear to have any error, and therefore could be used as a base
for an implementation.

Appendix C contains the proof for the protocol in Section 3. We are very confident that the
protocol as specified is correct and zero-knowledge as claimed. There are a few typos in the proof
of correctness, but nothing that can’t be fixed by direct inspection of the protocol.

The proof of soundness or, better, of Witness-Extended Emulation (WEE) is poorly written
and contains minor typos, but we are persuaded that the claim holds. The proof itself follows
closely, almost step-by-step, the proof of WEE in Theorem 1 in the Bulletproofs paper. The main
difference between the two proofs is that Protocol 2 in the original Bulletproofs paper is not ZK,
so the base case is trivial (the witness is trivially sent by the prover). Theorem 1 in Bulletproofs+

instead also has to show that the protocol is WEE for n = 1, but the technique used is the same
which is used in the recursion step of Bulletproofs, and we are persuaded that the claim is correct.

Both Bulletproofs and Bulletproofs+ don’t come with explicit proofs of WEE, but only proofs
that given enough accepting transcripts you can extract a witness. The notion of WEE is an en-
hanced version of proof-of-knowledge which essentially requires that there exists a single simulator-
extractor that can both extract the witness and produce an indistinguishable transcript. This is
needed to compose the protocol within larger protocols. Lindell [10] proves that every PoK is
WEE. The definition of WEE used here is the one from [7] which was also used in the original
Bulletproof paper, and differs slightly from the definition of Lindell as it allows for some common
reference string. To prove that the protocol is WEE both Bulletproofs and Bulletproofs+ rely on a
generalised forking Lemma from [3]. The original Lemma there requires an extractor that always
succeeds. Bulletproofs has (see their Theorem 6) changed this to work also for extractors with
negligible error. They don’t provide proof that this holds. After a quick check of the proof of the
forking Lemma in [3], we believe that their claim is correct, as the proof never explicitly uses the
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assumption that the extractor works with probability 1.

Bulletproofs only briefly describes (Section 4.4) how to compile the proposed protocols to a
non-interactive version and how to extract the public parameters using the Fiat-Shamir heuristic.
Bulletproofs+ is even less explicit (Section 2.4). Clearly how this is done has a very big impact on
the security of the protocol in practice, and we would recommend thinking carefully about it.

3.2 On Proof Malleability and Transferability

An important concern in practice is the malleability and transferability of the resulting NIZK. The
paper does not discuss this, as proofs are only provided for the interactive version of the protocol.
Regarding transferability: to avoid “replay attacks” in which someone copies someone else’s proof
and uses it in their transaction, it could be recommended to hash as much context as necessary
when deriving the challenges of the Fiat-Shamir transform, so that the proofs are non-transferable
from one context to another (this clearly requires the verifier to be aware of the context and to use
it at verification time). For example, if the protocol is run between parties with identities A,B,
those identifiers could be included in the hash so that e = H(tx, A,B) (where tx is whatever is
already hashed by Fiat-Shamir). Now this proof has “context” (A,B) and cannot be therefore
used by B towards a verifier C, and so on. The more it is hashed the more “local” the proof is,
and the less it can be replayed maliciously. Time, underlying blockchain, type of transaction, etc.
could be added to the context if deemed necessary. It would also be worth looking at what others
implementations of Bulletproofs have been doing in this regard. We note that these transferability
problems are not specific to Bulletproofs+ but appear in any implementation of Fiat-Shamir NIZKs.

Regarding malleability: The only result we are aware of on the non-malleability (or simulation-
extractability) of the Fiat-Shamir NIZK (note, ”non-malleability” does not include trivial trans-
ferability of the entire proof, aka replay attacks as described above) is proven in [6]. The theorem
in that paper doesn’t apply to Bulletproofs+ for technical reasons. However, it seems unlikely that
an adversary should be able to take a proof π for a statement x and should be able to create a
proof π′ for a related statement x′ without actually knowing a witness for x′.

3.3 On the correctness of Proofs

Section 4.1 contains a protocol for range proofs which uses the zk-WIP protocol from Section 3
as a building block. The resulting range proof is conceptually much simpler than the analogous
in the Bulletproof paper, since the building block already satisfies the zero-knowledge property.
Section 4.2 contains an amortized version of the range proof, closely following the technique for
amortization in the original Bulletproof paper. Both the protocol for a single instance and the
amortized version (Figure 2 and 3) are specified unambiguously, except for the fact that the refer-
ence string g ∈ Gmn

l and h ∈ Gmn
l is provided as part of the relation, while it should be described

(as it is) as a part of the reference string. The proof for the single instance protocol is omitted
since it is a special case of the amortized protocol. The proof of the amortized protocol is provided
in Appendix D. The proofs of correctness and (honest-verifier) zero-knowledge appear sound and
we did not spot any mistake.

The proof of WEE for the amortized range proof protocol in Bulletproofs+ has a mistake.
Proving WEE involves construction of an extractor for extracting witness values from a number
of valid proof transcripts for the same witness. Given a set of valid proof transcripts each using
different set of challenges, the first step in proving WEE is to extract the expressions of A and
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Vj , j ∈ [m] in terms of the reference string (g,h ∈ Gmn
l , g, h ∈ Gl), i.e.

A = gaL · haR · gβ · hα,
Vj = gvL,j · hvR,j · gvj · hγj .

In the WEE proof of the Bulletproofs+ paper, the authors use constant exponent vectors vL,vR
for all j ∈ [m]. We cannot assume this and we need to consider distinct vectors for each j ∈ [m]
and then prove that each of these vL,j ,vR,j ∈ Zmnp vectors equals the ‘0’ vector. Once we extract
these exponents of the elements from the reference string, we need to prove that they satisfy the
following desired relations.

aR = aL − 1mn

aL ◦ aR = 0mn

〈aL,dj〉 = vj

vL,j ◦ vR,j = 0mn

vL,j + vR,j = 0mn

 for all j ∈ [m]

Now, on substituting the expressions of A, Vj in the expression of Â below, we can obtain the

relation between
(
aL,aR, {vL,j ,vR,j}j∈[m]

)
.

Â = gâL · hâR · gâL�y âR · hα̂

= A · g−z·1mn · hz·1mn+d◦←−y mn ·Vymn+1·z2·zm · g(z−z2)y·〈1mn,ynm〉−zymn+1·〈1mn,d〉

The way it is done in the paper is: we first match the exponents of the generator vectors g,h and
then use them to cross-check the exponent of g. We have the following correction in the expressions
of âL, âR from page 36.

âL = aL − z · 1mn +
(
vL · ymn+1

)
+

 m∑
j=1

z2jymn+1 · vL,j


âR = aR + d ◦←−y mn + z · 1mn +

(
vR · ymn+1

)
+

 m∑
j=1

z2jymn+1 · vR,j


Now, all that remains is computing âL �y âR from the above equations and then comparing it
to the exponent of g in the expression of Â. Since the two sides of the equation we compare can
be thought of as two polynomials in y, z, it is easy to just match the coefficients of the challenge
powers. We do not explicitly write out the comparison equations for brevity, but we confirm that
the result follows in a way similar to that of the ‘Left hand side’ and ‘Right hand side’ comparion
table on page 36 of the paper.

In conclusion, apart from the above mistake in the proof of WEE of the range proof protocol,
rest all of the proofs seem to be sound and we did not encounter any mistakes. Therefore, inspite
of the error in the WEE proof, the conclusion of the proofs still hold (after rightful correction).

3 Paper Review 9
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4 Code Overview

We studied the code in the bp-plus branch of the repository https://github.com/SarangNoether/

monero. The last commit considered for the review is 2d287f69b79929908f884224c22c58d3bec50b09.
We analyse the code specific to the files:

• src/ringct/bulletproofs plus.h

• src/ringct/bulletproofs plus.cc

• src/tests/unit tests/bulletproofs plus.cpp (Testing module)

and relevant cryptographic functions in src/ringct.

In this section, we explain the implementation of the two main algorithms of Bulletproofs+: Prove
and Verify. Specifically, we map the parts of the code to the cryptographic equations for the case
of aggregation of multiple Bulletproofs+ proofs. This helps narrow down the domain for testing
and analysing the conformity of the code with the equations in the paper. Before we begin, we
describe a set of preliminaries and notations used in the code.

4.1 Notation

We want to prove that the amounts in Monero are in the range [0, 264− 1]. We analyse the case of
multiple proofs that are aggregated. Important pieces of notation and constants [9] are regrouped
below.

Notation:

(i) Gl the prime-ordered subgroup of the Ed25519 curve used in Monero

(ii) Zp the scalar field over which the Ed25519 curve is defined, p is a prime

(iii) m,n number of proofs to be aggregated and number of bits respectively

(iv) G base generator of the subgroup Gl

(v) H another generator of the subgroup Gl such that its discrete log w.r.t G is unknown

(vi) G,H generator vectors in Gl each of size mn such that the discrete log between their
elements as well as G,H is not known

(vii) yn a scalar vector (1, y, . . . , yn−1) ∈ Znp
(viii) −→y n a scalar vector (y, y2, . . . , yn) ∈ Znp

(ix) ←−y n a reverse-ordered scalar vector (yn, yn−1, . . . , y1) ∈ Znp
(x) V vector of commitments to the amounts, V = {Vj} ∈ Gn

l , Vj = aj ∗H + γj ∗G for
all j ∈ [m], where aj , γj ∈ Zp is the amount and the blinding factor respectively

Note that we use additive notation to describe equations in this document as used in the imple-
mentation. The paper uses multiplicative notation. Also, the Pedersen commitments in the paper
are defined as V = a ∗ G + γH ∈ Gl for amount a ∈ Zp and blinding factor γ ∈ Zp. However,
the Monero implementation switches the role of G and H so the commitments take the form
V = a ∗H + γG.

4 Code Overview 10
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Public parameters (in code):

(i) l order of the prime-order subgroup of the Ed25519 curve used in Monero, the order
of Ed25519 curve is 8× l = 2252 + 27742317777372353535851937790883648493

(ii) N number of bits of the elements whose range one wants to prove (N = 64)

(iii) M number of proofs to be aggregated (M ≤ maxM = 16)

(iv) G the base point of the subgroup of Ed25519 curve used

(v) H another generator of the subgroup, the discrete log relation between H, G is
assumed to be unknown1

(vi) Gi generator vector of size maxM ∗ maxN such that the discrete log between any of its
elements as well as G,H is not known

(vii) Hi generator vector of size maxM ∗ maxN such that the discrete log between any of its
elements as well as G,H is not known2

Witnesses (in code):

(i) v vector of M amounts such that 0 ≤ v[i] < 264 for all i ∈ [M]

(ii) gamma vector of M scalar field elements known as blinding factors

A BulletproofPlus proof (in code):

(i) A group element which is a Pedersen commitment to the input witness vectors

(ii) A1 Pedersen commitment (group element) to the witness values at the end of the
log2(mn) inner-product protocol rounds

(iii) B Pedersen commitment (group element) to the randomness used in the final round

(iv) r1 random scalar used in the final round

(v) s1 another random scalar used in the final round

(vi) d1 another random scalar used in the final round

(vii) L special Pedersen commitment vector to intermediate witness vectors in the
recursive inner-product protocol rounds

(viii) R special Pedersen commitment vector to intermediate witness vectors in the
recursive inner-product protocol rounds

(ix) V a vector in Gl, Pedersen commitments to amount v[i] and blinding factor gamma[i]
for i ∈ [M], although V is used in the proof system, it is a part of the transaction
and not of a BulletproofPlus proof.

Clearly, a BulletproofPlus proof consists of 2log2(mn) + 3 elements in Gl and 3 elements in Zp.
Since the size of compressed group elements as well as scalars for Ed25519 is 32 bytes, the size of
a BulletproofPlus proof is 96 bytes (or 3 elements) lesser than that of a Bulletproof proof.

1H is generated by hashing G using the function rct::hash to p3().
2All the generators G, H, Gi, Hi are the elements of the prime-order subgroup of the curve Ed25519.
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4.2 Prover’s Algorithm

The bulletproof plus PROVE function4 takes as input the vector of amounts and the blinding
factors, each of size M.

Step 1: A natural first step is checking (i) if the sizes are these vectors are correct, (ii) the vectors
contain scalars in the field Zp.

522 // Given a set of values v [0..2**N) and masks gamma , construct a range proof

523 BulletproofPlus bulletproof_plus_PROVE(const rct::keyV &sv , const rct::keyV &gamma)

524 {

525 // Sanity check on inputs

526 CHECK_AND_ASSERT_THROW_MES(sv.size() == gamma.size(), "Incompatible sizes of sv and

gamma");

527 CHECK_AND_ASSERT_THROW_MES (!sv.empty(), "sv is empty");

528 for (const rct::key &sve: sv)

529 CHECK_AND_ASSERT_THROW_MES(is_reduced(sve), "Invalid sv input");

530 for (const rct::key &g: gamma)

531 CHECK_AND_ASSERT_THROW_MES(is_reduced(g), "Invalid gamma input");

532

533 init_exponents ();

534

535 // Useful proof bounds

536 //

537 // N: number of bits in each range (here , 64)

538 // logN: base -2 logarithm

539 // M: first power of 2 greater than or equal to the number of range proofs to aggregate

540 // logM: base -2 logarithm

541 constexpr size_t logN = 6; // log2 (64)

542 constexpr size_t N = 1<<logN;

543 size_t M, logM;

544 for (logM = 0; (M = 1<<logM) <= maxM && M < sv.size(); ++logM);

545 CHECK_AND_ASSERT_THROW_MES(M <= maxM , "sv/gamma are too large");

Listing 1: Sanity checks on inputs

Step 2: The next step in the prover’s algorithm is to compute Pedersen commitments to the
amount vector. The implementation uses a neat trick here: all the scalars which would be used
in the final multi-exponentiation check by the verifier are pre-divided by scalar 8 ∈ Zp. This is
done because in the verification, we have to multiply the group elements (of the proof) by 8 to
ensure that they lie in the prime-order subgroup Gl. The net effect of this is that the scalar 8
gets cancelled in final multi-exponentiation step. As an alternative, one could multiply the group
elements by 8−1 ∈ Zp after the check that they lie in Gl. But group operations are a lot more
expensive than scalar multiplications. Thus, we do the following:

v8[i] := 8−1 · v[i], γ8[i] := 8−1 · γ[i]

555 // Prepare output commitments and offset by a factor of 8**( -1)

556 //

557 // This offset is applied to other group elements as well;

558 // it allows us to apply a multiply -by -8 operation in the verifier efficiently

559 // to ensure that the resulting group elements are in the prime -order point subgroup

560 // and avoid much more constly multiply -by -group -order operations.

561 for (size_t i = 0; i < sv.size(); ++i)

562 {

563 rct::key gamma8 , sv8;

564 sc_mul(gamma8.bytes , gamma[i].bytes , INV_EIGHT.bytes);

565 sc_mul(sv8.bytes , sv[i].bytes , INV_EIGHT.bytes);

566 rct:: addKeys2(V[i], gamma8 , sv8 , rct::H);

567 }

Listing 2: Computing Pedersen commitments

4The code listed in this report is from the file src/ringct/bulletproofs plus.cc.
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Step 3: Next, the vectors aL,aR are computed as: aL is the concatenation of binary (denoted as
bin(v)) representations of the amounts.

aL = (bin(v1) ‖ bin(v2) ‖ . . . ‖ bin(vm))

aR := aL − 1mn

569 // Decompose values

570 //

571 // Note that this effectively pads the set to a power of 2, which is required for the

inner -product argument later.

572 for (size_t j = 0; j < M; ++j)

573 {

574 for (size_t i = N; i-- > 0; )

575 {

576 if (j < sv.size() && (sv[j][i/8] & ((( uint64_t)1) <<(i%8))))

577 {

578 aL[j*N+i] = rct:: identity ();

579 aL8[j*N+i] = INV_EIGHT;

580 aR[j*N+i] = aR8[j*N+i] = rct::zero();

581 }

582 else

583 {

584 aL[j*N+i] = aL8[j*N+i] = rct::zero();

585 aR[j*N+i] = MINUS_ONE;

586 aR8[j*N+i] = MINUS_INV_EIGHT;

587 }

588 }

589 }

Listing 3: Decomposition of input amounts

Step 4: Note that the vectors aL,aR too are multipled by 8−1 for the same reason as mentioned
above. Next, we initialise the transcript and compute the Pedersen commitment to aL,aR as

A =
(α

8

)
∗G+

∑
i∈[n]

((
aL[i]

8

)
∗G[i] +

(
aR[i]

8

)
∗H[i]

)
.

592 // This is a Fiat -Shamir transcript

593 rct::key transcript = copy(initial_transcript);

594 transcript = transcript_update(transcript , rct:: hash_to_scalar(V));

595

596 // A

597 rct::key alpha = rct::skGen ();

598 rct::key pre_A = vector_exponent(aL8 , aR8);

599 rct::key A;

600 sc_mul(temp.bytes , alpha.bytes , INV_EIGHT.bytes);

601 rct:: addKeys(A, pre_A , rct:: scalarmultBase(temp));

Listing 4: Initialise transcript and compute A

Step 5: We then draw up the challenges y, z ∈ Zp from the transcript and compute constant
vectors depending only on the challenges. Namely, we compute:

d =
(
z2 · 2n, z4 · 2n, . . . , z2m · 2n

)
∈ Zmnp

ymn+2 =
(
1, y, y2, . . . , ymn+1

)
where wk = (1, w, . . . , wk−1) for any scalar w ∈ Zp. Note that while drawing up challenges, we
need to ensure that we do not encounter rct::zero(). If we do encounter a 0, we must re-compute
the challenges from the beginning.

603 // Challenges

604 rct::key y = transcript_update(transcript , A);

605 if (y == rct::zero())

606 {

607 MINFO("y is 0, trying again");

608 goto try_again;
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609 }

610 rct::key z = transcript = rct:: hash_to_scalar(y);

611 if (z == rct::zero())

612 {

613 MINFO("z is 0, trying again");

614 goto try_again;

615 }

616 rct::key z_squared;

617 sc_mul(z_squared.bytes , z.bytes , z.bytes);

618

619 // Windowed vector

620 // d[j*N+i] = z**(2*(j+1)) * 2**i

621 //

622 // We compute this iteratively in order to reduce scalar operations.

623 rct::keyV d(MN , rct::zero());

624 d[0] = z_squared;

625 for (size_t i = 1; i < N; i++)

626 {

627 sc_mul(d[i].bytes , d[i-1]. bytes , TWO.bytes);

628 }

629

630 for (size_t j = 1; j < M; j++)

631 {

632 for (size_t i = 0; i < N; i++)

633 {

634 sc_mul(d[j*N+i].bytes , d[(j-1)*N+i].bytes , z_squared.bytes);

635 }

636 }

637

638 rct::keyV y_powers = vector_of_scalar_powers(y, MN+2);

Listing 5: Computing challenges

Step 6: After all the above setup, the prover is ready to compute the witnesses before building
the weighted inner product relations.

a′L = aL − z · 1mn,
a′R = aR + d ◦←−y mn + z · 1mn,

α′ = α+
m∑
j=1

z2jymn+1 · γj .

640 // Prepare inner product terms

641 rct::keyV aL1 = vector_subtract(aL , z);

642

643 rct::keyV aR1 = vector_add(aR , z);

644 rct::keyV d_y(MN);

645 for (size_t i = 0; i < MN; i++)

646 {

647 sc_mul(d_y[i].bytes , d[i].bytes , y_powers[MN-i].bytes);

648 }

649 aR1 = vector_add(aR1 , d_y);

650

651 rct::key alpha1 = alpha;

652 temp = ONE;

653 for (size_t j = 0; j < sv.size(); j++)

654 {

655 sc_mul(temp.bytes , temp.bytes , z_squared.bytes);

656 sc_mul(temp2.bytes , y_powers[MN+1]. bytes , temp.bytes);

657 sc_mul(temp2.bytes , temp2.bytes , gamma[j].bytes);

658 sc_add(alpha1.bytes , alpha1.bytes , temp2.bytes);

659 }

Listing 6: Computing effective witness vectors

Step 7: The last step in the prover’s algorithm is computing the weighted inner product argument.
Prover runs the following recursive protocol:

Inputs: (G′,H′ ∈ Gn
l , G,H; a′,b′ ∈ Znp , α′)

4 Code Overview 14



Monero Bulletproofs+ Security Audit

• Set n′ = n
2

• Computing weighted inner products:

cL = 〈a′[0 : n′], −→y n′ ◦ b′[n′ : n]〉

cR = 〈yn′ · a′[n′ : n], −→y n′ ◦ b′[0 : n′]〉

• Compute L,R (note the division of scalars by 8):

L =

(
y−n

′

8
· a′[0 : n′]

)
∗G′[n′ : n] +

(
1

8
· b′[n′ : n]

)
∗H′[0 : n′] +

cL
8
∗H +

dL
8
∗G,

R =

(
yn

′

8
· a′[n′ : n]

)
∗G′[0 : n′] +

(
1

8
· b′[0 : n′]

)
∗H′[n′ : n] +

cR
8
∗H +

dR
8
∗G.

for dL, dR ← Zp.

• Update the generator vectors:

G′ ← e−1 ∗G′[0 : n′] + (ey−n
′
) ∗G′[n′ : n]

H′ ← e ∗H′[0 : n′] + e−n
′ ∗H′[n′ : n]

• Update witness vectors:

a′ ← e · a′[0 : n′] + (e−1yn
′
) · a′[n′ : n]

b′ ← e−1 · b′[0 : n′] + e · b′[n′ : n]

α′ ← α′ + e2dL + e−2dR

686 // Inner -product rounds

687 while (nprime > 1)

688 {

689 nprime /= 2;

690

691 rct::key cL = weighted_inner_product(slice(aprime , 0, nprime), slice(bprime , nprime

, bprime.size()), y);

692 rct::key cR = weighted_inner_product(vector_scalar(slice(aprime , nprime , aprime.

size()), y_powers[nprime ]), slice(bprime , 0, nprime), y);

693

694 rct::key dL = rct::skGen();

695 rct::key dR = rct::skGen();

696

697 L[round] = compute_LR(nprime , yinvpow[nprime], Gprime , nprime , Hprime , 0, aprime ,

0, bprime , nprime , cL, dL);

698 R[round] = compute_LR(nprime , y_powers[nprime], Gprime , 0, Hprime , nprime , aprime ,

nprime , bprime , 0, cR , dR);

699

700 const rct::key challenge = transcript_update(transcript , L[round], R[round]);

701 if (challenge == rct::zero())

702 {

703 MINFO("challenge is 0, trying again");

704 goto try_again;

705 }

706

707 const rct::key challenge_inv = invert(challenge);

708

709 sc_mul(temp.bytes , yinvpow[nprime ].bytes , challenge.bytes);

710 hadamard_fold(Gprime , challenge_inv , temp);

711 hadamard_fold(Hprime , challenge , challenge_inv);

712

713 sc_mul(temp.bytes , challenge_inv.bytes , y_powers[nprime ].bytes);

714 aprime = vector_add(vector_scalar(slice(aprime , 0, nprime), challenge),

vector_scalar(slice(aprime , nprime , aprime.size()), temp));
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715 bprime = vector_add(vector_scalar(slice(bprime , 0, nprime), challenge_inv),

vector_scalar(slice(bprime , nprime , bprime.size()), challenge));

716

717 rct::key challenge_squared;

718 sc_mul(challenge_squared.bytes , challenge.bytes , challenge.bytes);

719 rct::key challenge_squared_inv = invert(challenge_squared);

720 sc_muladd(alpha1.bytes , dL.bytes , challenge_squared.bytes , alpha1.bytes);

721 sc_muladd(alpha1.bytes , dR.bytes , challenge_squared_inv.bytes , alpha1.bytes);

722

723 ++round;

724 }

Listing 7: Weighted inner product argument

Step 8: The final round of the inner product argument consists of the following:

• Compute commitments to the 1-sized a′,b′ vectors after log2(mn) inner-product rounds:

A =

(
r′

8

)
∗G′[0] +

(
s′

8

)
∗H′[0] +

(
yr′ · b′[0] + ys′ · a′[0]

8

)
∗H +

(
δ′

8

)
∗G,

B =

(
yr′s′

8

)
∗G+

(
η′

8

)
∗H,

where r′, s′, δ′, η′ ← Zp.

• Update scalar proof elements:

r′ ← r′ + ea′[0],

r′ ← s′ + eb′[0],

r′ ← η′ + eδ′ + e2α′.

726 // Final round computations

727 rct::key r = rct:: skGen();

728 rct::key s = rct:: skGen();

729 rct::key d_ = rct:: skGen();

730 rct::key eta = rct::skGen();

731

732 std::vector <MultiexpData > A1_data;

733 A1_data.reserve (4);

734 A1_data.resize (4);

735

736 sc_mul(A1_data [0]. scalar.bytes , r.bytes , INV_EIGHT.bytes);

737 A1_data [0]. point = Gprime [0];

738

739 sc_mul(A1_data [1]. scalar.bytes , s.bytes , INV_EIGHT.bytes);

740 A1_data [1]. point = Hprime [0];

741

742 sc_mul(A1_data [2]. scalar.bytes , d_.bytes , INV_EIGHT.bytes);

743 ge_p3 G_p3;

744 ge_frombytes_vartime (&G_p3 , rct::G.bytes);

745 A1_data [2]. point = G_p3;

746

747 sc_mul(temp.bytes , r.bytes , y.bytes);

748 sc_mul(temp.bytes , temp.bytes , bprime [0]. bytes);

749 sc_mul(temp2.bytes , s.bytes , y.bytes);

750 sc_mul(temp2.bytes , temp2.bytes , aprime [0]. bytes);

751 sc_add(temp.bytes , temp.bytes , temp2.bytes);

752 sc_mul(A1_data [3]. scalar.bytes , temp.bytes , INV_EIGHT.bytes);

753 ge_p3 H_p3;

754 ge_frombytes_vartime (&H_p3 , rct::H.bytes);

755 A1_data [3]. point = H_p3;

756

757 rct::key A1 = multiexp(A1_data , 0);

758

759 sc_mul(temp.bytes , r.bytes , y.bytes);

760 sc_mul(temp.bytes , temp.bytes , s.bytes);

761 sc_mul(temp.bytes , temp.bytes , INV_EIGHT.bytes);

762 sc_mul(temp2.bytes , eta.bytes , INV_EIGHT.bytes);
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763 rct::key B;

764 rct:: addKeys2(B, temp2 , temp , rct::H);

765

766 rct::key e = transcript_update(transcript , A1, B);

767 rct::key e_squared;

768 sc_mul(e_squared.bytes , e.bytes , e.bytes);

769

770 rct::key r1;

771 sc_muladd(r1.bytes , aprime [0]. bytes , e.bytes , r.bytes);

772

773 rct::key s1;

774 sc_muladd(s1.bytes , bprime [0]. bytes , e.bytes , s.bytes);

775

776 rct::key d1;

777 sc_muladd(d1.bytes , d_.bytes , e.bytes , eta.bytes);

778 sc_muladd(d1.bytes , alpha1.bytes , e_squared.bytes , d1.bytes);

779

780 return BulletproofPlus(std::move(V), A, A1, B, r1, s1, d1, std::move(L), std::move(R));

Listing 8: Final round

4.3 Verifier’s Algorithm

The verification function takes input multiple BulletproofPlus proofs and verifies them in an
aggregated manner.

Step 1: The first step is a basic setup.

811 // Given a batch of range proofs , determine if they are all valid

812 bool bulletproof_plus_VERIFY(const std::vector <const BulletproofPlus*> &proofs)

813 {

814 init_exponents ();

815

816 const size_t logN = 6;

817 const size_t N = 1 << logN;

818

819 // Set up

820 size_t max_length = 0; // size of each of the longest proof ’s inner -product vectors

821 size_t nV = 0; // number of output commitments across all proofs

822 size_t inv_offset = 0;

823 size_t max_logM = 0;

824

825 std::vector <bp_plus_proof_data_t > proof_data;

826 proof_data.reserve(proofs.size());

Listing 9: Verification setup

Step 2: Iterate over each proof and run sanity checks on the proof elements, reconstruct the
challenges (yj , zj ,xj , ej) ∈ Zp for all j ∈ [m] and batch invert the {yj}j∈[m] challenges. Note that
the inner-product challenges are denoted by xj = (xj,1, xj,2, . . . , xj,log2(n)).

833 for (const BulletproofPlus *p: proofs)

834 {

835 const BulletproofPlus &proof = *p;

836

837 // Sanity checks

838 CHECK_AND_ASSERT_MES(is_reduced(proof.r1), false , "Input scalar not in range");

839 CHECK_AND_ASSERT_MES(is_reduced(proof.s1), false , "Input scalar not in range");

840 CHECK_AND_ASSERT_MES(is_reduced(proof.d1), false , "Input scalar not in range");

841

842 CHECK_AND_ASSERT_MES(proof.V.size() >= 1, false , "V does not have at least one

element");

843 CHECK_AND_ASSERT_MES(proof.L.size() == proof.R.size(), false , "Mismatched L and R

sizes");

844 CHECK_AND_ASSERT_MES(proof.L.size() > 0, false , "Empty proof");

845

846 max_length = std::max(max_length , proof.L.size());

847 nV += proof.V.size();

848

849 bp_plus_proof_data_t pd;
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850

851 // Reconstruct the challenges

852 rct::key transcript = copy(initial_transcript);

853 transcript = transcript_update(transcript , rct:: hash_to_scalar(proof.V));

854 pd.y = transcript_update(transcript , proof.A);

855 CHECK_AND_ASSERT_MES (!(pd.y == rct::zero()), false , "y == 0");

856 pd.z = transcript = rct:: hash_to_scalar(pd.y);

857 CHECK_AND_ASSERT_MES (!(pd.z == rct::zero()), false , "z == 0");

858

859 // Determine the number of inner -product rounds based on proof size

860 size_t M;

861 for (pd.logM = 0; (M = 1<<pd.logM) <= maxM && M < proof.V.size(); ++pd.logM);

862 CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM , false , "Proof is not the expected

size");

863 max_logM = std::max(pd.logM , max_logM);

864

865 const size_t rounds = pd.logM+logN;

866 CHECK_AND_ASSERT_MES(rounds > 0, false , "Zero rounds");

867

868 // The inner -product challenges are computed per round

869 pd.challenges.resize(rounds);

870 for (size_t j = 0; j < rounds; ++j)

871 {

872 pd.challenges[j] = transcript_update(transcript , proof.L[j], proof.R[j]);

873 CHECK_AND_ASSERT_MES (!(pd.challenges[j] == rct::zero()), false , "challenges[j]

== 0");

874 }

875

876 // Final challenge

877 pd.e = transcript_update(transcript ,proof.A1,proof.B);

878 CHECK_AND_ASSERT_MES (!(pd.e == rct::zero()), false , "e == 0");

879

880 // Batch scalar inversions

881 pd.inv_offset = inv_offset;

882 for (size_t j = 0; j < rounds; ++j)

883 to_invert.push_back(pd.challenges[j]);

884 to_invert.push_back(pd.y);

885 inv_offset += rounds + 1;

886 proof_data.push_back(pd);

887 }

Listing 10: Reconstructing challenges across multiple proofs

Step 3: The idea of aggregating verification of multiple BulletproofPlus proofs is that we can
combine the single multi-scalar multiplication checks of each proof using random weights and verify
if it evaluates to identity. Let’s say the j-th BulletproofPlus proof for mj different amounts is
given as:

Πj =
{
Aj , A1,j , Bj ∈ Gl, (Lj ,Rj) =

(
Li,j , Ri,j

)log2(nmj)

i=1
∈ G2×log2(nmj)

l , r′j , s
′
j , δ
′
j ∈ Zp

}
This proof can be verified using a single multi-scalar multiplication of the form [2]:

Mj =
(
ej · r′j · sj + zje

2
j1
mjn
)
∗G[0 : mj ] +(

ej · s′j · s′j − zje2j · 1mjn − e2j · dj ◦←−y mnj
)
∗H[0 : mj ] +(

r′j � s′j − e2jζ(yj , zj)
)
∗H +(

δ′j
)
∗G + (1)(

−e2j
)
∗Aj +(

−e2jymn+1
j · z2j · zmj

)
∗Vj +

(xL,j) ∗ Lj + (xR,j) ∗Rj +

(−ej) ∗A1,j −Bj
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where we have

ζ(yj , zj) = (zj − z2j )yj · 〈1mjn,y
nmj

j 〉 − zjymn+1
j · 〈1mjn,dj〉,

xL,j = e2j · (−x21,j ,−x22,j , . . . ,−x2log2(nmj)
),

xR,j = e2j · (−x−21,j ,−x
−2
2,j , . . . ,−x

−2
log2(nmj)

),

and sj = (s1, s2, . . . , smjn), s′j = (s−11 , s−12 , . . . , s−1mjn) ∈ Zmjn
p such that for all i ∈ [nmj ]

si =

log2(nmj)∏
k=1

x
b(i,k)
k,j where b(i, k) =

{
1 if k-th bit of (i− 1) is 1

−1 otherwise.

Note that the generator vectors G,H are of size maxMN of which only the first mj terms would be
used for verifying the proof Πj . The proof Πj is considered to be a valid BulletproofPlus proof
if Mj equals to the identity O (point at infinity).

The key thing to note is that we can combine multiple of such proofs and verify all of them at once
using random weights as

num proofs∑
j=1

wj ∗Mj
?
= O.

This greatly speeds up batched aggregated verification because of the Pippenger’s multi-exponentiation
algorithm. Lastly, while computing the proof, recall that the quantities A,A1, B,L,R,V ∈ Gl were
computed using scalar witnesses which were divided by 8. In the verification of the proof, the proof
elements A,A1, B,L,R,V ∈ Gl are first multiplied by 8 so as to ensure that all of them lie in the
prime order subgroup [16]. The net effect of this is that it cancels out the 8 in the final multi-scalar
multiplication check in equation (1). We explain the parts of the verifier code for completeness.

Step 3.1: We first need to initialise the scalars of the common generators (G,H, G,H) with 0.
Note that the scalar multiplicands of (G,H, G,H) across different proofs (which are to be verified)
are linearly combined using random weights.

901 // Weights and aggregates

902 //

903 // The idea is to take the single multiscalar multiplication used in the verification

904 // of each proof in the batch and weight it using a random weighting factor , resulting

905 // in just one multiscalar multiplication check to zero for the entire batch.

906 // We can further simplify the verifier complexity by including common group elements

907 // only once in this single multiscalar multiplication.

908 // Common group elements ’ weighted scalar sums are tracked across proofs for this

reason.

909 //

910 // To build a multiscalar multiplication for each proof , we use the method described in

911 // Section 6.1 of the preprint. Note that the result given there does not account for

912 // the construction of the inner -product inputs that are produced in the range proof

913 // verifier algorithm; we have done so here.

914 rct::key G_scalar = rct::zero();

915 rct::key H_scalar = rct::zero();

916 rct::keyV Gi_scalars(maxMN , rct::zero());

917 rct::keyV Hi_scalars(maxMN , rct::zero());

Listing 11: Initialise scalars multiplicands of (G, H, G, H) with 0

Step 3.2: When we start to process each BulletproofPlus proof, we first do some sanity checks
on the proof size and its elements. Specifically it is checked that the size of the vector L is equal to
log2(mn) = 6+log2(m) since n = 64. Furthermore, we generate random scalars (called as weights)
to linearly combine the scalar multiplicands of the reference string elements. Lastly, all the group
elements are multiplied by scalar 8 ∈ Zp so as to ensure that they lie in the prime order subgroup
Gl and to zeroise the torsion elements (if any). Note that while generating an honest proof, we
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divide our scalars by 8 ∈ Zp before computing group elements of the proof. For example,

A =
(α

8

)
∗G+

∑
i∈[n]

((
aL[i]

8

)
∗G[i] +

(
aR[i]

8

)
∗H[i]

)
.

During the proof verification, this element A is multiplied by 8 ∈ Zp before proceeding to the core
verification equation. Therefore, what we get is:

8 ∗A = α ∗G+
∑
i∈[n]

(aL[i] ∗G[i] + aR[i] ∗H[i]) ,

which is the correct expression of the Pedersen commitment to the vectors aL,aR ∈ Zmnp . This

is how the pre-multiplied 1
8 ∈ Zp to the scalars while proof generation are cancelled off at the

beginning of verification processing.

923 // Process each proof and add to the weighted batch

924 for (const BulletproofPlus *p: proofs)

925 {

926 const BulletproofPlus &proof = *p;

927 const bp_plus_proof_data_t &pd = proof_data[proof_data_index ++];

928

929 CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM , false , "Proof is not the expected

size");

930 const size_t M = 1 << pd.logM;

931 const size_t MN = M*N;

932

933 // Random weighting factor must be nonzero , which is exceptionally unlikely!

934 rct::key weight = ZERO;

935 while (weight == ZERO)

936 {

937 weight = rct::skGen();

938 }

939

940 // Rescale previously offset proof elements

941 //

942 // This ensures that all such group elements are in the prime -order subgroup.

943 proof8_V.resize(proof.V.size()); for (size_t i = 0; i < proof.V.size(); ++i) rct::

scalarmult8(proof8_V[i], proof.V[i]);

944 proof8_L.resize(proof.L.size()); for (size_t i = 0; i < proof.L.size(); ++i) rct::

scalarmult8(proof8_L[i], proof.L[i]);

945 proof8_R.resize(proof.R.size()); for (size_t i = 0; i < proof.R.size(); ++i) rct::

scalarmult8(proof8_R[i], proof.R[i]);

946 ge_p3 proof8_A1;

947 ge_p3 proof8_B;

948 ge_p3 proof8_A;

949 rct:: scalarmult8(proof8_A1 , proof.A1);

950 rct:: scalarmult8(proof8_B , proof.B);

951 rct:: scalarmult8(proof8_A , proof.A);

Listing 12: Sanity checks on each proof

Step 3.3: Compute the scalar multiplicand of the commitment vector Vj for the j-th proof:

wj ·
(
−e2jymn+1

j · z2j · zmj
)

964 // V_j: -e**2 * z**(2*j+1) * y**(MN+1) * weight

965 rct::key e_squared;

966 sc_mul(e_squared.bytes , pd.e.bytes , pd.e.bytes);

967

968 rct::key z_squared;

969 sc_mul(z_squared.bytes , pd.z.bytes , pd.z.bytes);

970

971 sc_sub(temp.bytes , ZERO.bytes , e_squared.bytes);

972 sc_mul(temp.bytes , temp.bytes , y_MN_1.bytes);

973 sc_mul(temp.bytes , temp.bytes , weight.bytes);

974 for (size_t j = 0; j < proof8_V.size(); j++)

975 {
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976 sc_mul(temp.bytes , temp.bytes , z_squared.bytes);

977 multiexp_data.emplace_back(temp , proof8_V[j]);

978 }

Listing 13: Scalar multiplicand of Vj

Step 3.3: Compute the scalar multiplicand of the elements Bj , Aj , A1,j , G for the j-th proof:

Bj : wj · (−1)

Aj : wj ·
(
−e2j

)
A1,j : wj · (−ej)

Gscalar += wj ·
(
δ′j
)

980 // B: -weight

981 sc_mul(temp.bytes , MINUS_ONE.bytes , weight.bytes);

982 multiexp_data.emplace_back(temp , proof8_B);

983

984 // A1: -weight*e

985 sc_mul(temp.bytes , temp.bytes , pd.e.bytes);

986 multiexp_data.emplace_back(temp , proof8_A1);

987

988 // A: -weight*e*e

989 rct::key minus_weight_e_squared;

990 sc_mul(minus_weight_e_squared.bytes , temp.bytes , pd.e.bytes);

991 multiexp_data.emplace_back(minus_weight_e_squared , proof8_A);

992

993 // G: weight*d1

994 sc_muladd(G_scalar.bytes , weight.bytes , proof.d1.bytes , G_scalar.bytes);

Listing 14: Scalar multiplicand of Bj , Aj , A1,j , G

Step 3.4: To compute the scalar multiplicands of H, we first compute the following scalar vector:

dj =
(
z2j · 2n, z4j · 2n, . . . , z2mj · 2n

)
∈ Zmnp

Hscalar += wj ·

(
r′js
′
jyj + e2j (zj − z2j )

mn∑
k=1

ykj + e2jzjy
mn+1
j

mn∑
k=1

dj [k]

)

996 // Windowed vector

997 // d[j*N+i] = z**(2*(j+1)) * 2**i

998 rct::keyV d(MN , rct::zero());

999 d[0] = z_squared;

1000 for (size_t i = 1; i < N; i++)

1001 {

1002 sc_add(d[i].bytes , d[i-1]. bytes , d[i-1]. bytes);

1003 }

1004

1005 for (size_t j = 1; j < M; j++)

1006 {

1007 for (size_t i = 0; i < N; i++)

1008 {

1009 sc_mul(d[j*N+i].bytes , d[(j-1)*N+i].bytes , z_squared.bytes);

1010 }

1011 }

1012

1013 // More efficient computation of sum(d)

1014 rct::key sum_d;

1015 sc_mul(sum_d.bytes , TWO_SIXTY_FOUR_MINUS_ONE.bytes , sum_of_even_powers(pd.z, 2*M).

bytes);

1016

1017 // H: weight *( r1*y*s1 + e**2*( y**(MN+1)*z*sum(d) + (z**2-z)*sum(y) ) )

1018 rct::key sum_y = sum_of_scalar_powers(pd.y, MN);

1019 sc_sub(temp.bytes , z_squared.bytes , pd.z.bytes);

1020 sc_mul(temp.bytes , temp.bytes , sum_y.bytes);

1021

1022 sc_mul(temp2.bytes , y_MN_1.bytes , pd.z.bytes);

1023 sc_mul(temp2.bytes , temp2.bytes , sum_d.bytes);

1024 sc_add(temp.bytes , temp.bytes , temp2.bytes);
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1025 sc_mul(temp.bytes , temp.bytes , e_squared.bytes);

1026 sc_mul(temp2.bytes , proof.r1.bytes , pd.y.bytes);

1027 sc_mul(temp2.bytes , temp2.bytes , proof.s1.bytes);

1028 sc_add(temp.bytes , temp.bytes , temp2.bytes);

1029 sc_muladd(H_scalar.bytes , temp.bytes , weight.bytes , H_scalar.bytes);

Listing 15: Scalar multiplicand of H

Step 3.5: Compute the scalar vectors sj , s
′
j ∈ Zmnp as defined in Step 3 of the verifier’s algorithm.

1031 // Compute the number of rounds for the inner -product argument

1032 const size_t rounds = pd.logM+logN;

1033 CHECK_AND_ASSERT_MES(rounds > 0, false , "Zero rounds");

1034

1035 const rct::key *challenges_inv = &inverses[pd.inv_offset ];

1036 const rct::key yinv = inverses[pd.inv_offset + rounds ];

1037

1038 // Compute challenge products

1039 challenges_cache.resize(1<<rounds);

1040 challenges_cache [0] = challenges_inv [0];

1041 challenges_cache [1] = pd.challenges [0];

1042 for (size_t j = 1; j < rounds; ++j)

1043 {

1044 const size_t slots = 1<<(j+1);

1045 for (size_t s = slots; s-- > 0; --s)

1046 {

1047 sc_mul(challenges_cache[s].bytes , challenges_cache[s/2]. bytes , pd.

challenges[j].bytes);

1048 sc_mul(challenges_cache[s-1]. bytes , challenges_cache[s/2]. bytes ,

challenges_inv[j].bytes);

1049 }

1050 }

Listing 16: Scalar vectors sj , s′j ∈ Zmnp

Step 3.5: Cumulatively compute the scalar multiplicand vectors of G,H:

Gscalar += wj ·
(
ej · r′j · sj + zje

2
j1
mjn
)

Hscalar += wj ·
(
ej · s′j · s′j − zje2j · 1mjn − e2j · dj ◦←−y mnj

)
1052 // Gi and Hi

1053 rct::key e_r1_w_y;

1054 sc_mul(e_r1_w_y.bytes , pd.e.bytes , proof.r1.bytes);

1055 sc_mul(e_r1_w_y.bytes , e_r1_w_y.bytes , weight.bytes);

1056 rct::key e_s1_w;

1057 sc_mul(e_s1_w.bytes , pd.e.bytes , proof.s1.bytes);

1058 sc_mul(e_s1_w.bytes , e_s1_w.bytes , weight.bytes);

1059 rct::key e_squared_z_w;

1060 sc_mul(e_squared_z_w.bytes , e_squared.bytes , pd.z.bytes);

1061 sc_mul(e_squared_z_w.bytes , e_squared_z_w.bytes , weight.bytes);

1062 rct::key minus_e_squared_z_w;

1063 sc_sub(minus_e_squared_z_w.bytes , ZERO.bytes , e_squared_z_w.bytes);

1064 rct::key minus_e_squared_w_y;

1065 sc_sub(minus_e_squared_w_y.bytes , ZERO.bytes , e_squared.bytes);

1066 sc_mul(minus_e_squared_w_y.bytes , minus_e_squared_w_y.bytes , weight.bytes);

1067 sc_mul(minus_e_squared_w_y.bytes , minus_e_squared_w_y.bytes , y_MN.bytes);

1068 for (size_t i = 0; i < MN; ++i)

1069 {

1070 rct::key g_scalar = copy(e_r1_w_y);

1071 rct::key h_scalar;

1072

1073 // Use the binary decomposition of the index

1074 sc_muladd(g_scalar.bytes , g_scalar.bytes , challenges_cache[i].bytes ,

e_squared_z_w.bytes);

1075 sc_muladd(h_scalar.bytes , e_s1_w.bytes , challenges_cache [(~i) & (MN -1)].bytes ,

minus_e_squared_z_w.bytes);

1076

1077 // Complete the scalar derivation

1078 sc_add(Gi_scalars[i].bytes , Gi_scalars[i].bytes , g_scalar.bytes);

1079 sc_muladd(h_scalar.bytes , minus_e_squared_w_y.bytes , d[i].bytes , h_scalar.bytes

);

1080 sc_add(Hi_scalars[i].bytes , Hi_scalars[i].bytes , h_scalar.bytes);

1081
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1082 // Update iterated values

1083 sc_mul(e_r1_w_y.bytes , e_r1_w_y.bytes , yinv.bytes);

1084 sc_mul(minus_e_squared_w_y.bytes , minus_e_squared_w_y.bytes , yinv.bytes);

1085 }

Listing 17: Scalar multiplicand vectors of G, H

Step 3.5: Compute the scalar multiplicand vectors of Lj ,Rj ∈ Glog2(nmj)
l :

Lj : wj · e2j · (−x21,j ,−x22,j , . . . ,−x2log2(nmj)
),

Rj : wj · e2j · (−x−21,j ,−x
−2
2,j , . . . ,−x

−2
log2(nmj)

).

1087 // L_j: -weight*e*e*challenges[j]**2

1088 // R_j: -weight*e*e*challenges[j]**( -2)

1089 for (size_t j = 0; j < rounds; ++j)

1090 {

1091 sc_mul(temp.bytes , pd.challenges[j].bytes , pd.challenges[j].bytes);

1092 sc_mul(temp.bytes , temp.bytes , minus_weight_e_squared.bytes);

1093 multiexp_data.emplace_back(temp , proof8_L[j]);

1094

1095 sc_mul(temp.bytes , challenges_inv[j].bytes , challenges_inv[j].bytes);

1096 sc_mul(temp.bytes , temp.bytes , minus_weight_e_squared.bytes);

1097 multiexp_data.emplace_back(temp , proof8_R[j]);

1098 }

Listing 18: Scalar multiplicand vectors of Lj , Rj

Step 3.6: Final verification check:

1101 // Verify all proofs in the weighted batch

1102 multiexp_data.emplace_back(G_scalar , rct::G);

1103 multiexp_data.emplace_back(H_scalar , rct::H);

1104 for (size_t i = 0; i < maxMN; ++i)

1105 {

1106 multiexp_data[i * 2] = {Gi_scalars[i], Gi_p3[i]};

1107 multiexp_data[i * 2 + 1] = {Hi_scalars[i], Hi_p3[i]};

1108 }

1109 if (!( multiexp(multiexp_data , 2 * maxMN) == rct:: identity ()))

1110 {

1111 MERROR("Verification failure");

1112 return false;

1113 }

1114

1115 return true;

Listing 19: Batch Verification using a single multi-scalar multiplication
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5 Vulnerabilities

5.1 Missing ‘point at infinity’ check on group elements

In the verification of a BulletproofPlus proof, we multiply the group elements A,A1, B,L,R,V
of the proof with 8 so as to ensure that if these group elements contained any torsion elements 5,
they could be nullified off. Concretely, if a proof element has a torsion component A′ = A + K
where K ∈ G8, then 8A′ = 8A + 8K = 8A because 8K = O. However, we do not check if the
resulting element A′ is a point at infinity. If a malicious prover passes all the group elements of
the proof as torsion elements except A and sets A to be of a certain value, the malicious prover
could succeed in verifying a false proof as correct. We next describe the attack in detail.

Before we proceed, here is how the verification of a single BulletproofPlus proof using a single
multi-scalar multiplication looks like.(

e · r1 · s + ze21m
)
∗G +(

e · s1 · s′ − ze2 · 1mn − e2 · d ◦←−y mn
)
∗H +(

r � s1 − e2ζ(y, z)
)
∗H +

(d1) ∗G +
?
= O(

−e2
)
∗A +(

−e2ymn+1 · z2 · zm
)
∗V +

(xL) ∗ L + (xR) ∗R +

(−e) ∗A1 −B

where we have

ζ(y, z) = (z − z2)y · 〈1mn,ynm〉 − zymn+1 · 〈1mn,d〉,

xL = e2 ·
(
−x21,−x22, . . . ,−x2log2(nm)

)
,

xR = e2 ·
(
−x−21 ,−x−22 , . . . ,−x−2log2(nm)

)
,

and s = (s1, s2, . . . , smn), s′ = (s−11 , s−12 , . . . , s−1mn) ∈ Zmnp such that for all i ∈ [nm]

si =

log2(nm)∏
k=1

x
b(i,k)
k where b(i, k) =

{
1 if k-th bit of (i− 1) is 1

−1 otherwise.

Attack: A malicious prover creates the following false proof:

BulletproofPlus(A,A1, B,L,R, r1, s1, d1)

such that A1, B ∈ G8,L,R ∈ Glog2(mn)
8 , V ∈ Gm

8 and r1 = s1 = d1 = 0. In this case, the terms
corresponding to G,A,V,L,R, A1, B would be O. We can now set the value of A to be:

A = (z1m) ∗G− (z1m + d ◦←−y mn) ∗H− ζ(y, z) ∗H.

This means that a false proof would pass the verification check. However, this attack is very unlikely
to be exploited because the expression of A depends on the challenges y, z but the challenges y, z
themselves are drawn up by hashing the transcript with A. There is a circular dependency in the
computation of A and the challenges y, z. This reduces the security of the protocol to pre-image
resistance of the hashing function.

5The elements present in the small subgroup G8 of size 8 (of the curve Ed25519) are known as torsion elements.
They are listed on line 115 in ../tests/unit tests/bulletproofs plus.cpp.

5 Vulnerabilities 24

https://github.com/SarangNoether/monero/blob/2d287f69b79929908f884224c22c58d3bec50b09/tests/unit_tests/bulletproofs_plus.cpp#L115


Monero Bulletproofs+ Security Audit

Recommendation: Although this attack is very difficult and impractical to exploit, it is better
to insert the check if the group elements are points at infinity after we multiply them by 8. To be
precise, we should have:

// Rescale previously offset proof elements

//

// This ensures that all such group elements are in the prime -order subgroup.

proof8_V.resize(proof.V.size());

for (size_t i = 0; i < proof.V.size(); ++i) {

rct:: scalarmult8(proof8_V[i], proof.V[i]);

// Point at infinity check

++ CHECK_AND_ASSERT_THROW_MES(proof8_V[i] != rct:: identity (), "Commitment V cannot

contain a point at infinity!");

}

proof8_L.resize(proof.L.size());

for (size_t i = 0; i < proof.L.size(); ++i) {

rct:: scalarmult8(proof8_L[i], proof.L[i]);

// Point at infinity check

++ CHECK_AND_ASSERT_THROW_MES(proof8_L[i] != rct:: identity (), "Proof element L cannot

contain a point at infinity!");

}

proof8_R.resize(proof.R.size());

for (size_t i = 0; i < proof.R.size(); ++i) {

rct:: scalarmult8(proof8_R[i], proof.R[i]);

// Point at infinity check

++ CHECK_AND_ASSERT_THROW_MES(proof8_R[i] != rct:: identity (), "Proof element R cannot

contain a point at infinity!");

}

ge_p3 proof8_A1;

ge_p3 proof8_B;

ge_p3 proof8_A;

rct:: scalarmult8(proof8_A1 , proof.A1);

rct:: scalarmult8(proof8_B , proof.B);

rct:: scalarmult8(proof8_A , proof.A);

// Point at infinity checks

++ CHECK_AND_ASSERT_THROW_MES(proof8_A1 != rct:: identity (), "Proof element A1 cannot be a

point at infinity!");

++ CHECK_AND_ASSERT_THROW_MES(proof8_A != rct:: identity (), "Proof element A cannot be a

point at infinity!");

++ CHECK_AND_ASSERT_THROW_MES(proof8_B != rct:: identity (), "Proof element B cannot be a

point at infinity!");

Listing 20: Point at infinity check after torsion check

5.2 Missing check if challenge ‘e’ is 0

Challenge e is computed by hashing the transcript and relevant proof elements (A1, B) during
the last round of the weighted inner-product protocol by the prover. However, unlike the other
challenges, e is not checked if it equals to 0 ∈ Zp.

rct::key e = transcript_update(transcript , A1, B);

++ if (e == rct::zero())

++ {

++ MINFO("challenge e is 0, trying again");

++ goto try_again;

++ }

rct::key e_squared;

sc_mul(e_squared.bytes , e.bytes , e.bytes);

Listing 21: Missing zero value check of challenge e.

Recommendation: This can be fixed by a simple check and re-doing the computation if the
check fails, just how the check is already done for other challenges like y, z.
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6 Weaknesses

6.1 Inconsistency in verifier transcript computation

Verifier transcript is generated before multiplication by 8: as a result the proof elements that
include small order subgroup elements will change the transcript. Specifically, the challenges gen-
erated by the verifier would include the torsion elements from the proof elements while hashing.
For example, a malicious prover can change the amount commitments to include a torsion com-
ponent: V ′j = Vj + kT, j ∈ [m] where k ∈ [8], 〈T 〉 = G8. When such a proof with commitments
{V ′j }j∈[m] is verified, the transcript challenges would be computed by the verifier before we filter
out the torsion component in the commitments. Note that the verification would not pass because
the verifier’s challenge computed would not match the one used while generating the proof. We
suggest that the implementation should comply with the transcript computation in the paper and
the challenges should be computed after group elements are multiplied by 8.

Note that only re-ordering of the verifier transcript computation would not be sufficient because
that would allow a malicious prover to create false proofs passing the verification. In that case,
the strategy of multiplication of group elements by 8 to filter out torsion components might not
work any more. To ensure that the group elements are in the prime order subgroup, it might be
better to switch to the more expensive route: multiplying the group elements by the prime-order
subgroup’s order p.

6.2 Incomplete condition for checking ‘power of two’

In the function vector of scalar powers(), the check for n to be a power of two on line 246 in
the file ../src/ringct/bulletproofs plus.cc does not comply with the case n = 0. The check
should not pass but it passes for the case n = 0.

241 // Given a scalar , construct the sum of its powers from 2 to n (where n is a power of 2):

242 //

243 // Output x**2 + x**4 + x**6 + ... + x**n

244 static rct::key sum_of_even_powers(const rct::key &x, size_t n)

245 {

246 CHECK_AND_ASSERT_THROW_MES ((n & (n - 1)) == 0, "Need n to be a power of 2");

247

248 rct::key x1 = copy(x);

249 sc_mul(x1.bytes , x1.bytes , x1.bytes);

250

251 rct::key res = copy(x1);

252 while (n > 2)

253 {

254 sc_muladd(res.bytes , x1.bytes , res.bytes , res.bytes);

255 sc_mul(x1.bytes , x1.bytes , x1.bytes);

256 n /= 2;

257 }

258

259 return res;

260 }

Recommendation: Change the check to:

CHECK_AND_ASSERT_THROW_MES (!n && (n & (n - 1)) == 0, "Need n to be a power of 2");

Similarly, in the function sum of scalar powers() on line 274 in the same file, the check does not
perform correctly if n = 0. The function wrongly returns x ∈ Zp when n = 0.

262 // Given a scalar , return the sum of its powers from 1 to n

263 //

264 // Output x**1 + x**2 + x**3 + ... + x**n

265 static rct::key sum_of_scalar_powers(const rct::key &x, size_t n)

266 {

267 rct::key res = ONE;
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268 if (n == 1)

269 return res;

270

271 n += 1;

272 rct::key x1 = copy(x);

273

274 const bool is_power_of_2 = (n & (n - 1)) == 0;

275 if (is_power_of_2)

276 {

277 sc_add(res.bytes , res.bytes , x1.bytes);

278 while (n > 2)

279 {

280 sc_mul(x1.bytes , x1.bytes , x1.bytes);

281 sc_muladd(res.bytes , x1.bytes , res.bytes , res.bytes);

282 n /= 2;

283 }

284 }

285 else

286 {

287 rct::key prev = x1;

288 for (size_t i = 1; i < n; ++i)

289 {

290 if (i > 1)

291 sc_mul(prev.bytes , prev.bytes , x1.bytes);

292 sc_add(res.bytes , res.bytes , prev.bytes);

293 }

294 }

295 sc_sub(res.bytes , res.bytes , ONE.bytes);

296

297 return res;

298 }

Recommendation: Change the condition to:

const bool is_power_of_two = (!n) && (n & (n - 1)) == 0;

6.3 Input parameter edge case consideration in vector of scalar powers()

In the function vector of scalar powers(const rct::key &x, size t n), when n = 0, we re-
turn an empty vector. This will cause a segmentation fault if a user tries to access an empty vector.
We recommend throwing an error message when the function is called with n = 0 so it allows the
user to know that the input parameter passed is not right.

// Given a scalar , construct a vector of its powers:

//

// Output (1,x,x**2,...,x**{n-1})

static rct::keyV vector_of_scalar_powers(const rct::key &x, size_t n)

{

rct::keyV res(n);

-- if (n == 0)

-- return res;

++ CHECK_AND_ASSERT_THROW_MES(n != 0, "Need n to be non -zero")

res [0] = rct:: identity ();

if (n == 1)

return res;

res [1] = x;

for (size_t i = 2; i < n; ++i)

{

sc_mul(res[i].bytes , res[i-1]. bytes , x.bytes);

}

return res;

}

Listing 22: Point at infinity check after torsion check

6.4 Redundant Assertions

We noticed some assertions in the code which are always either true or false and lead to redundant
checks. We suggest to either correct these assertions or remove them if unnecessary.
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1. In the function multiexp(), STRAUS SIZE LIMIT is defined as 232 at the start of the program.
Therefore the assertion in the function (line 94) to check if STRAUS SIZE LIMIT ≤ 232 would always
be true.

90 static inline rct::key multiexp(const std::vector <MultiexpData > &data , size_t HiGi_size)

91 {

92 if (HiGi_size > 0)

93 {

94 static_assert (232 <= STRAUS_SIZE_LIMIT , "Straus in precalc mode can only be

calculated till STRAUS_SIZE_LIMIT");

95 return HiGi_size <= 232 && data.size() == HiGi_size ? straus(data ,

straus_HiGi_cache , 0) : pippenger(data , pippenger_HiGi_cache , HiGi_size ,

get_pippenger_c(data.size()));

96 }

97 else

98 {

99 return data.size() <= 95 ? straus(data , NULL , 0) : pippenger(data , NULL , 0,

get_pippenger_c(data.size()));

100 }

101 }

Listing 23: Redundant assertion on line 94

2. In the function bulletproof plus PROVE(), we declare logN = 6 at the very beginning on line
816. This is because N = 64 since each proof is a 64-bit range proof. Clearly, the inner product
argument of an aggregated Bulletproofs+ will consist of log2(mn) = log2(m) + log2(n) > 6 rounds.
Therefore, an assertion of the form rounds > 0 on line 868 becomes redundant.

811 // Given a batch of range proofs , determine if they are all valid

812 bool bulletproof_plus_VERIFY(const std::vector <const BulletproofPlus*> &proofs)

813 {

814 init_exponents ();

815

816 const size_t logN = 6;

817 const size_t N = 1 << logN;

818 ...

819 ...

859 ...

860 ...

861 // Determine the number of inner -product rounds based on proof size

862 size_t M;

863 for (pd.logM = 0; (M = 1<<pd.logM) <= maxM && M < proof.V.size(); ++pd.logM);

864 CHECK_AND_ASSERT_MES(proof.L.size() == 6+pd.logM , false , "Proof is not the

expected size");

865 max_logM = std::max(pd.logM , max_logM);

866

867 const size_t rounds = pd.logM+logN;

868 CHECK_AND_ASSERT_MES(rounds > 0, false , "Zero rounds");

869 ...

870 ...

Listing 24: Redundant assertion on line 868

3. In the function pippenger() in the file src/ringct/multiexp.cc, the last argument c is al-
ways equal to get pippenger c(data.size()) in the context of the ringct module. Further, the
function get pippenger c(data.size()) always returns the integer 9. Therefore the assertion in
the function pippenger(), line 615, to check if c ≤ 9 would always be true.

608 rct::key pippenger(const std::vector <MultiexpData > &data , const std::shared_ptr <

pippenger_cached_data > &cache , size_t cache_size , size_t c)

609 {

610 if (cache != NULL && cache_size == 0)

611 cache_size = cache ->size;

612 CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache_size <= cache ->size , "Cache is too

small");
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613 if (c == 0)

614 c = get_pippenger_c(data.size());

615 CHECK_AND_ASSERT_THROW_MES(c <= 9, "c is too large");

616 ...

617 ...

618 ...

Listing 25: Redundant assertion on line src/ringct/multiexp.cc:614

6.5 Caution on usage of amount commitments outside Bulletproofs+

The commitments Vj to the amounts aj ∈ Zp in Bulletproofs+ and Bulletproofs are computed as:

Vj =
(γj

8

)
∗G+

(aj
8

)
∗H.

This is done as an optimisation for the verification computation. In the verification, the group
elements of the proof are multiplied by 8 to ensure that the torsion components (if any) in them
are filtered out. Here, when we multiply Vj by 8, we get 8Vj = γjG + ajH, which is the desired
Pedersen commitment. If we had not multiplied the amount and the blinding factor by 1

8 , we
would have to multiply Vj first by 8 and then by 1

8 to ensure the torsion components are filtered
out without changing the original group elements.

Pedersen commitments in Monero are defined as V = γG+aH to amount a ∈ Zp and γ ∈ Zp. Note
that the same commitments Vj to the amounts are also used in the RingCT transaction structure
in the CryptoNote protocol [14]. Therefore, we caution about using the amount commitments from
the BulletproofPlus and Bulletproof proofs outside of the range proving systems.
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7 Code Improvements

7.1 Reduction in field multiplications in compute LR()

In the function compute LR(), we compute the group elements L,R ∈ Gl for a given inner product
round. Function inputs: (n, y,G, G0,H, H0,a, a0,b, b0, c, d)

L =
(y

8
· a[a0 : a0 + n]

)
∗G[g0 : g0 + n] +(

1

8
· b[b0 : b0 + n]

)
∗H[h0 : h0 + n] +

c

8
∗H +

d

8
∗G.

187 // Helper function used to compute the L and R terms used in the inner -product round

function

188 static rct::key compute_LR(size_t size , const rct::key &y, const std::vector <ge_p3 > &G,

size_t G0, const std::vector <ge_p3 > &H, size_t H0, const rct::keyV &a, size_t a0, const

rct::keyV &b, size_t b0, const rct::key &c, const rct::key &d)

189 {

190 CHECK_AND_ASSERT_THROW_MES(size + G0 <= G.size(), "Incompatible size for G");

191 CHECK_AND_ASSERT_THROW_MES(size + H0 <= H.size(), "Incompatible size for H");

192 CHECK_AND_ASSERT_THROW_MES(size + a0 <= a.size(), "Incompatible size for a");

193 CHECK_AND_ASSERT_THROW_MES(size + b0 <= b.size(), "Incompatible size for b");

194 CHECK_AND_ASSERT_THROW_MES(size <= maxN*maxM , "size is too large");

195

196 std::vector <MultiexpData > multiexp_data;

197 multiexp_data.resize(size*2 + 2);

198 rct::key temp;

199 for (size_t i = 0; i < size; ++i)

200 {

201 sc_mul(temp.bytes , a[a0+i].bytes , y.bytes);

202 sc_mul(multiexp_data[i*2]. scalar.bytes , temp.bytes , INV_EIGHT.bytes);

203 multiexp_data[i*2]. point = G[G0+i];

204

205 sc_mul(multiexp_data[i*2+1]. scalar.bytes , b[b0+i].bytes , INV_EIGHT.bytes);

206 multiexp_data[i*2+1]. point = H[H0+i];

207 }

208

209 sc_mul(multiexp_data [2* size]. scalar.bytes , c.bytes , INV_EIGHT.bytes);

210 ge_p3 H_p3;

211 ge_frombytes_vartime (&H_p3 , rct::H.bytes);

212 multiexp_data [2* size]. point = H_p3;

213

214 sc_mul(multiexp_data [2* size +1]. scalar.bytes , d.bytes , INV_EIGHT.bytes);

215 ge_p3 G_p3;

216 ge_frombytes_vartime (&G_p3 , rct::G.bytes);

217 multiexp_data [2* size +1]. point = G_p3;

218

219 return multiexp(multiexp_data , 0);

220 }

Listing 26: Batch Verification using a single multi-scalar multiplication

The scalar multiplicand of G is computed in two steps:

(i) temp = y · a[a0 + i] (line 201)

(ii) G scalar = 1
8 · temp (line 202)

So, we effectively use 2 scalar multiplications for each i ∈ [n]. We could instead reduce it a single
field multiplication by pre-computing y′ = y

8 and then G scalar = y′ ·a[a0 + i]. Since this function
is called for log2(mn) times for sizes

(
mn
2 ,

mn
4 , . . . , 2

)
, we can save a total of mn − log2(mn) field

multiplications.
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7.2 Redundant loop and copy before inner-product rounds

Before beginning the computation in the recursive inner product protocol, the witness and the
generator vectors are copied to temporary vectors in the loop on line 671.

661 // These are used in the inner product rounds

662 size_t nprime = MN;

663 std::vector <ge_p3 > Gprime(MN);

664 std::vector <ge_p3 > Hprime(MN);

665 rct::keyV aprime(MN);

666 rct::keyV bprime(MN);

667

668 const rct::key yinv = invert(y);

669 rct::keyV yinvpow(MN);

670 yinvpow [0] = ONE;

671 for (size_t i = 0; i < MN; ++i)

672 {

673 Gprime[i] = Gi_p3[i];

674 Hprime[i] = Hi_p3[i];

675 if (i > 0)

676 {

677 sc_mul(yinvpow[i].bytes , yinvpow[i-1]. bytes , yinv.bytes);

678 }

679 aprime[i] = aL1[i];

680 bprime[i] = aR1[i];

681 }

Listing 27: Setting up before the inner-product rounds

We also compute the terms of the vector ←−y mn = (1, y−1, y−2, . . . , ymn−1) in the same loop. We
can shift the computation in this loop to the loop on the line 645 as shown below.

640 // Prepare inner product terms

641 rct::keyV aprime = vector_subtract(aL, z);

642

643 // declare d_y , yinvpow , Gprime , Hprime

644 rct::keyV bprime = vector_add(aR, z);

645 rct::keyV d_y(MN);

646

647 const rct::key yinv = invert(y);

648 rct::keyV yinvpow(MN);

649 yinvpow [0] = ONE;

650

651 std::vector <ge_p3 > Gprime(MN);

652 std::vector <ge_p3 > Hprime(MN);

653

654 for (size_t i = 0; i < MN; i++)

655 {

656 sc_mul(d_y[i].bytes , d[i].bytes , y_powers[MN-i].bytes);

657

658 Gprime[i] = Gi_p3[i];

659 Hprime[i] = Hi_p3[i];

660 if (i > 0)

661 {

662 sc_mul(yinvpow[i].bytes , yinvpow[i-1]. bytes , yinv.bytes);

663 }

664 }

665 bprime = vector_add(bprime , d_y);

Listing 28: Modification of the loop at line src/ringct/bulletproofs plus.cc::L645

Note that we have also renamed aL1 to aprime and aR1 to bprime to avoid copying aL1, aR1 to
new vectors aprime, bprime. This would save the redundant copying of two vectors of size mn
along with getting rid of a mn-sized loop.
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