
A Proof of Reserves Protocol with Short
Proofs and a Method to Estimate Amount

Upper Bounds for MimbleWimble

A Seminar Report
Submitted in partial fulfillment of
the requirements for the degree of

Dual Degree (B.Tech & M.Tech) in Electrical Engineering
with Specialization in Communication & Signal Processing

by

Suyash Bagad
(Roll No. 15D070007)

Supervisor:
Prof. Saravanan Vijayakumaran

Department of Electrical Engineering
Indian Institute of Technology Bombay

Mumbai 400076 (India)

24 June 2020

Approval Sheet

Department of Electrical Engineering
Indian Institute of Technology, Bombay

The dissertation entitled “A Proof of Reserves Protocol with Short Proofs and
a Method to Estimate Amount Upper Bounds for MimbleWimble” submitted by
Suyash Bagad (Roll No. 15D070007) is approved for the degree of Master of Tech-
nology.

Name of Chairman Prof. Sachin Patkar

Name of Examiners Prof. Sachin Patkar, Prof. Nikhil Karamchandani

Name of Supervisor Prof. Saravanan Vijayakumaran

Signature of Supervisor

Date: 24 June 2020

Place: Mumbai

Declaration

I declare that this written submission represents my ideas in my own words and
where others’ ideas or words have been included, I have adequately cited and refer-
enced the original sources. I declare that I have properly and accurately acknowl-
edged all sources used in the production of this report. I also declare that I have
adhered to all principles of academic honesty and integrity and have not misrep-
resented or fabricated or falsified any idea/data/fact/source in my submission. I
understand that any violation of the above will be a cause for disciplinary action
by the Institute and can also evoke penal action from the sources which have thus
not been properly cited or from whom proper permission has not been taken when
needed.

Suyash Bagad
Date: 24 June 2020 (Roll No. 15D070007)

ii

Abstract

Cryptocurrency exchanges enable customers to buy digital assets without mining
them in exchange for fiat currencies. They also provide customers with custodial
wallets for trading purposes. However, in cases of the exchanges being hacked or
involvement in an exit scam, customer assets are lost leading the customers to lose
trust. Proof of Solvency is a technique to prove that an exchange owns assets at
least as much as its liabilities, so that in unfortunate cases of hacks, the exchange
could reimburse customer funds. If exchanges regularly publish proofs of solvency,
they can regain the trust of their customers. A proof of solvency comprises of a proof
of reserves and a proof of liabilities. Our work focuses only on designing privacy-
preserving proof of reserves protocols for cryptocurrency exchanges as it depends
only on publicly available data from the blockchain as against private customer
data in the latter.

In this work, we design a novel proof of reserves protocol named RevelioBP
for MimbleWimble based cryptocurrencies. Revelio [1], the existing state-of-the-art
proof of reserves protocol for MimbleWimble provides privacy to exchange-owned
outputs by hiding them in a larger anonymity set. However, it suffers from two
major drawbacks: (i) the Revelio proof sizes scale linearly with the anonymity set
restricting the frequency of publishing proofs of reserves for auditing, (ii) collusion
between multiple exchanges can be detected only if exchanges generate their proofs
at the same blockchain state. RevelioBP successfully alleviates both of these draw-
backs using a Bulletproofs [2] based framework. The proof size of RevelioBP scales
logarithmically in the anonymity set. By linking RevelioBP proof generation to the
blockchain state, we enable the exchanges to generate proofs of reserves simultane-
ously (corresponding to a particular blockchain state), facilitating robust collusion
detection. Further, we use multi-exponentiation technique to boost verification of
RevelioBP proofs, making it ~3X faster than proof generation. Shorter proof sizes
and faster verification brings great convenience to the customers since they might

iii

Abstract iv

possess limited computational power. On the other hand, benefits of RevelioBP
come with a higher computational cost for the exchanges.

In a parallel research on the outputs in Grin - a MimbleWimble based cryp-
tocurrency, we derive upper bounds on the amounts hidden in Grin outputs. Grin
outputs are Pedersen commitments which are perfectly hiding. This implies that
given a Grin output, even a computationally unbounded adversary cannot figure
out what amount it hides. However, the knowledge of public coinbase reward and
the underlying transaction rules might reveal some information about the amounts
hidden in Pedersen commitments. In this work, we establish upper bounds on the
amounts hidden in Grin outputs leveraging the transaction structure in Grin. In a
March 2020 snapshot of the Grin blockchain, we find that out of the 110,149 unspent
regular transaction outputs 983 of them have less than 1800 grin (number of coins
minted in half an hour) stored in them. On the other hand, 95% of the unspent
regular transaction outputs in the snapshot have an upper bound which is at least
90% of the total Grin supply at their respective block heights.

List of Publications

[1] S. Bagad and S. Vijayakumaran, “On the Confidentiality of Amounts in Grin,”
in Crypto Valley Conference on Blockchain Technology (CVCBT), 2020.

[2] S. Bagad and S. Vijayakumaran, “Performance Trade-offs in Design of Mim-
bleWimble Proofs of Reserves,” in IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), 2020.

v

Table of Contents

Abstract iii

List of Publications v

List of Figures ix

List of Tables xi

Acknowledgements xii

1 Introduction 1
1.1 What is a Blockchain? . 1

1.1.1 Decentralized Ledger . 2
1.2 Notion of Privacy on a Blockchain . 4
1.3 Cryptocurrency Exchanges . 5

1.3.1 Hacks and Frauds of Exchanges 5
1.4 Proof of Solvency . 6

1.4.1 Proof of Reserves . 6
1.5 Organization of the Thesis . 8

2 Cryptographic Preliminaries 9
2.1 Notation . 9
2.2 Basics of Elliptic Curves . 10

2.2.1 Point Addition in Elliptic Curves 10
2.3 Cryptographic Assumptions . 13
2.4 Cryptographic Commitments . 13
2.5 Zero-Knowledge Arguments of Knowledge 15

2.5.1 Zero-Knowledge Arguments 15
2.5.2 Defining Zero-Knowledge Arguments of Knowledge 17

vi

Table of Contents vii

3 Literature Survey 20
3.1 Improved Inner-Product Argument 20

3.1.1 Inner-Product Argument . 22
3.1.2 Recursive Inner-Product Argument 24

3.2 Bulletproofs . 26
3.3 Omniring . 30

3.3.1 Main Idea . 30
3.4 Overview of MimbleWimble & Grin 31

3.4.1 Outputs in Grin . 31
3.4.2 Transactions in Grin . 31
3.4.3 Transaction Aggregation . 32
3.4.4 Grin Blocks . 33

3.5 Revelio - A MimbleWimble Proof of Reserves Protocol 35
3.5.1 Proving Statements About Discrete Logarithms 35
3.5.2 Main Idea of Revelio . 36
3.5.3 Drawbacks of Revelio . 37

4 RevelioBP - MimbleWimble Proof of Reserves Protocol with Short
Proofs 38
4.1 Introduction . 38
4.2 Our Contribution . 38
4.3 Outputs in MimbleWimble . 39
4.4 From Omniring to RevelioBP . 39
4.5 RevelioBP Proof of Reserves Protocol 40

4.5.1 Proof Generation . 41
4.5.2 Proof Verification . 42

4.6 ZK Argument of Knowledge ΠRevBP 43
4.6.1 Building Inner Product Relation 45

4.7 Security Properties of RevelioBP . 52
4.7.1 Inflation Resistance . 52
4.7.2 Collusion Resistance . 52
4.7.3 Output Privacy . 52

4.8 Performance . 55
4.8.1 Scalability and Performance Trade-off 57

4.9 Conclusion . 57

Table of Contents viii

5 Confidentiality of Amounts in Grin 59
5.1 Our Contribution . 60
5.2 Related Work . 61
5.3 Illustration of Flow Upper Bound Calculation 62
5.4 The Flow Graph . 63
5.5 Results . 67
5.6 Conclusion . 68

A Security Proofs of RevelioBP 69
A.1 Proof of Lemma 4.1 . 69
A.2 Proof of Theorem 1 (Perfect SHVZK) 70
A.3 Proof of Theorem 4.2 (Soundness) . 71
A.4 Proof of Theorem 4.3 (Output Privacy) 76

References 78

List of Figures

1.1 Understanding decentralized ledger 3

2.1 An elliptic curve given by the equation y2 = x3 − x+ 2 over R 11
2.2 Point addition in elliptic curves over R 12
2.3 Example of a zero knowledge proof 16

3.1 Argument of knowledge for LIP_mod 22
3.2 Improved Inner-Product Argument for LIP_mod 24
3.3 Improved Inner-Product Argument for LIP (3.1) 25
3.4 Inner Product Range Proof for LBP 27
3.5 A visual of the Dandelion protocol for transaction aggregation and the

process of cut-through. Note that the coinbase outputs are denoted
as Ocb in blue colour. 34

3.6 Inclusion of kernels and fees in a Grin block. Note that the total
number of transactions in a block are equal to the total number of
kernels in a block. Also, fcb = 0, the fees for coinbase transaction,
for all Grin blocks. 34

4.1 Notation used in the argument of knowledge ΠRevBP 47
4.2 Honest encoding of witness vectors 48
4.3 Definitions of constraint vectors where dots mean zero scalars or vectors 48
4.4 Definitions of compressed constraint vectors 48
4.5 A system of equations guaranteeing the integrity of the encoding of

the witnesses . 48
4.6 Argument of knowledge for LRevBP . 49
4.7 Performance comparison of RevelioBP and Revelio for G =

secp256k1 elliptic curve. All the plots are in log-log scale. 56

5.1 llustration of flow upper bound calculation for blocks at height h1, h2, h3. 62
5.2 Subgraph generated for block at height 1499. 65

ix

List of Figures x

5.3 Plot of flow ratio vs block height. Plot of flow ratio close to 1 shown
magnified on right. 66

5.4 The distribution of flow ratio for outputs in the URTO set. 66
5.5 Flow ratio plot for blocks in range [39000,41000], the top and bottom

plots have steps of size 1 and 10 respectively. 68

List of Tables

3.1 Example of Transaction Aggregation 32

4.1 Proof sizes of Revelio and RevelioBP protocols 55
4.2 Summary of performance comparison between Revelio and RevelioBP 58

xi

Acknowledgements

I would like to express my deepest appreciation and gratitude to my guide Prof. Sar-
avanan Vijayakumaran for his guidance and constant supervision and help through-
out the last 18 months. His insightful suggestions and comments have time and
again helped me get a more in-depth understanding of the field. His most valuable
lesson for me, from amongst many others, was to be persistent especially in times
when things are not going as planned. Not only did he offer consistent assistance
with regards to the academic work but also gave invaluable suggestions in helping me
carve out my career path. I also thank the Bharti Centre for Communication at IIT
Bombay and Vibha ma’am particularly for providing necessary logistical support.
Thanks are also due to Arijit Dutta of IIT, Bombay for his many useful remarks
and discussions about the project and otherwise. I also acknowledge the help offered
by my brother Piyush Bagad (Wadhwani AI) in understanding Python as well as
in running simulations. I would also like to thank my dear friend Madhura Pawar
for her constant encouragement which helped me work towards my goal even when
things weren’t working out. Finally, I express gratitude towards my family for giving
me the opportunities and freedom in choosing research as my career.

Suyash Bagad
IIT Bombay
24 June 2020

xii

Chapter 1

Introduction

The rise of cryptocurrencies have openend up unending possibilities of how minimal
or no trust based systems could be established owing to decentralization. The con-
cept of blockchain was introduced with the founding of Bitcoin by Satoshi Nakamoto
[3]. Satoshi Nakamoto proposed and implemented idea of a consensus based, trust-
less, truly peer-to-peer system for financial transactions. Notwithstanding an in-
trumental step towards establishing a decentralized and a trustless system, Bitcoin
has several practical limitations with regards to privacy, security and scalability [4].
This led to the development of more privacy and anonymity focussed cryptocurren-
cies like Monero [5] and Zcash [6]. Grin [7] and Beam [8] are two relatively new
projects which are backed by the MimbleWimble protocol [9] and claim to promise
scalability, anonymity and fungibility all at once. The rise in privacy-centric cryp-
tocurrencies further led to growth in popularity of cryptocurrencies not only among
investors but also common people.

1.1 What is a Blockchain?
The concept of a Blockchain originates from the idea of having a decentralized,
publicly visible and trust-free ledger. The term blockchain was first coined by Satoshi
Nakamoto, the creator of Bitcoin [3]. In literal terms, a blockchain implies that
blocks containing financial transactions would be added to a publicly verifiable ledger
in a timely manner, forming a chain of blocks. We expand on the need and the basic
idea of a decentralized ledger in the following subsection.

1

1.1 What is a Blockchain? 2

1.1.1 Decentralized Ledger

A ledger is a principal book of records which keeps a track of all transactions
measured in terms of a monetary unit. Bitcoin is a decentralized, public ledger, de-
centralized because there is no trusted third party controlling the ledger and public
because anyone with bitcoin can participate in the network, receive and send bit-
coins, and even hold a copy of this ledger (essentially, the history of all transactions)
if they want to. In that sense, the ledger is “non-trusted” and transparent to public.
As opposed to such a decentralized ledger setup, traditional banks use centralized
ledger system where each bank has it’s own ledger visible only to the concerned user.

In reference to Figure∗ 1.1a, in a physical transaction, the Alice hands Bob a
physical arcade coin. Bob now has one coin, and Alice has zero. The transaction is
complete. If the same transaction is to be performed digitally (Figure 1.1b), Alice
would send a string of some bits (corresponding to the desired amount) to Bob.
Now, since it is just a string of bits, what is the guarantee that Alice would not
reproduce that same string of bits in her mail or hard-disk? If this happens, it
would mean that although Alice sent Bob the amount, Alice still possesses the same
amount. This clearly is a violation. To tackle this, we must have a ledger or a record
of all transactions between Alice and Bob. When Alice gives Bob the digital token,
the ledger records the transaction (Figure 1.1c). Bob has the token, and Alice does
not. Let us call the one who maintains this ledger as Dave. This setup assumes
that Dave is a trusted middleman for maintaining ledger. Now, what if Alice bribes
Dave to erase her transaction? What if Dave decides to charge a fee that neither
Alice or Bob want to pay? What happens when Alice and Bob cannot trust the
third party? This results in a decentralized and public ledger system (Figure 1.1d).
When a lot of people have a copy of the same ledger, it becomes very difficult to
tamper the system and cheat. This works because everyone is holding a copy of the
same digital ledger and more the number of trusted people holding this ledger, the
stronger it becomes.

Blockchain technology offers a way for untrusted parties to reach a consensus
on a common digital history. The World Bank defines Blockchain as follows [10]:

Definition 1.1 (Blockchain) A ‘blockchain’ is a particular type of data structure
used in some distributed ledgers which stores and transmits data in packages called
“blocks” that are connected to each other in a digital ‘chain’.

∗Credits: https://www.cbinsights.com/research/what-is-blockchain-technology/

https://www.cbinsights.com/research/what-is-blockchain-technology/

1.1 What is a Blockchain? 3

(a) A physical transaction

(b) A digital transaction

(c) A digital transaction with ledger

(d) A decentralized ledger

Figure 1.1: Understanding decentralized ledger

Blockchains employ cryptographic algorithms to record and synchronize data
across a network in an unchangeable manner. The state of the Blockchain is the
current status of the ledger visible to public. In case of Bitcoin, any independent
observer can verify the state of the blockchain as well as the validity of all the
transactions on the ledger. This is a serious limitation for Bitcoin and could possibly
prohibit many use cases. As an example, if employees of a company were to receive
their salaries in bitcoin, would they agree if their salaries were published on the

1.2 Notion of Privacy on a Blockchain 4

public blockchain? This naturally demands for a transaction system which preserves
anonymity and confidentiality.

1.2 Notion of Privacy on a Blockchain
The very concept of having all the information about transactions (predominantly
financial) public via a distributed ledger or a blockchain demands for privacy and
anonymity of the users. Before we talk about privacy on the blockchain, it is neces-
sary to understand what we do mean by terms like privacy and anonymity. Modern
day cryptography is based on the following primary functions [11]:

(i) Privacy/confidentiality: To ensure that no one can read or access the message
except the intended receiver

(ii) Authentication: Proving one’s identity

(iii) Integrity: Ensuring that the message intended to be received by the receiver
is not altered in the path

(iv) Non-repudiation: A protocol for checking if a message was actually generated
by the sender

(v) Key exchange: The protocol which determines how key(s) are shared between
the sender and the receiver

All of the above functions form an necessary part of a cryptographic system.
A well-designed system ensures all of the above functions are taken care of con-
sidering the computational bounds for carrying out any protocol. In a confidential
transaction, it is desirable to have confidentiality and anonymity. This means that
in a valid confidential transaction, the identity of the sender and receiver must be
confidential and the amounts transferred must also be hidden. The idea of hav-
ing such private transactions in digital currencies could be traced back to David
Chaum’s work on blind signatures [12]. A similar concept of privacy is required in
the blockchain framework. The digital assets owned by users must not be publicly
visible. There should be a mechanism to unlink the identity of a user with his or her
digital identity, i.e. public key address. The interaction between the sender and the
receiver in a transaction must not reveal anything to them other than the amounts
being transferred. A user must not be able to reuse his or her digital assets. Making
the transactions digital and public at the same time brings about several challenges

1.3 Cryptocurrency Exchanges 5

in ensuring that the above requirements are being satisfied. Active research is still
being pursued in the direction of not only solving such practical problems but to do
them efficiently and in a scalable manner.

1.3 Cryptocurrency Exchanges
The rise of cryptocurrencies began with the inception of Bitcoin in 2009. Since
then, several cryptocurrencies with better privacy and security guarantees are being
developed. Cryptocurrencies gained popularity among general masses with the es-
tablishment of cryptocurrency exchanges. Also known as digital currency exchanges
or crypto exchanges, they are essentially businesses that allow customers to trade
cryptocurrencies or digital currencies for other assets including conventional fiat
money or different digital currencies. From a customer point of view, exchanges
not only made owning cryptocurrencies possible to non-miners but also provided
them with fast trading platforms for transactions within cryptocurrencies and fiat.
Customers were also provided with custodial wallets freeing them from the has-
sle of storing and remembering private keys. In the early days of cryptocurrency,
crypto exchanges were very few and less-known, but not too long ago their num-
ber increased dramatically and they became an integral part of the cryptoeconomic
ecosystem. They were responsible for the boost in the transaction volumes of the
vast majority of the cryptocurrency sales and liquidity.

1.3.1 Hacks and Frauds of Exchanges

The downside of cryptocurrency exchanges is that they are required to store
sensitive information of customers like the private keys and account balances. If in
case an exchange is hacked, it might result in loss of customer-owned cryptocurrency
assets. There have been many high-profile hacks over the years, many of which went
unnoticed for some time [13]. In 2014, one of the biggest Bitcoin exchanges Mt.Gox
lost almost 750,000 of its customers’ bitcoins and around 100,000 of its own bitcoins,
totaling around 7% of all bitcoins back then, and worth around $473 million, leading
to filing of bankruptcy. There have been cases where exchanges lure customers into
buying digital assets in return for fiat currency, but do not allocate any digital assets
in reality. Such exit scams by exchanges have led to huge losses of customer and
investor funds [14].

Although having a fool-proof method to avoid such hacks might be a difficult
task, proof of solvency is one way to uphold the trust of customers. A proof of

1.4 Proof of Solvency 6

solvency is the guarantee by the exchange that it owns reserves at least as much as
its total liabilities towards customers. In this way, even after cases of hacking, the
exchange could repay its liabilities to the customers.

1.4 Proof of Solvency
An exchange is said to be solvent if it owns assets at least as much as its liabilities.
An exchange proving solvency convinces its customers that in an unfortunate case of
a hack or a fraud, it could reimburse the lost customer funds through its own assets.
A proof of solvency consists of two parts: proof of reserves and proof of liabilities.
The former proves the assets owned by the exchange while the latter shows the total
liabilities of the exchange towards its customers.

The challenge in designing proof of solvency is to maintain privacy of the ex-
change as well as the customers. Proof of reserves protocols in [1, 15, 16] publish
a Pedersen commitment to the total assets owned by the exchange. Pedersen com-
mitments are a cryptographic way of hiding secret messages or amounts. We will
describe Pedersen commitments in detail in the next chapter. Suppose an exchange
publishes Cres as a Pedersen commitment to its total reserves ares. Similarly, it could
publish a Pedersen commitment to its total liabilities aliab as Cliab using customer
data as described in [15]. However, this proof of reserves in [15] requires each cus-
tomer to individually verify that his or her amount is included in the proof of liabil-
ities. If a customer fails to verify his or her amount, the exchange in principle could
hide the particular customer’s data to shrink its liabilities. Chalkias et al. [17] re-
cently proposed a scheme called Distributed Auditing Proofs of Liabilities (DAPOL)
which addresses this concern. DAPOL uses private information retrieval to ensure
the inclusion proof by every customer. Therefore, given the Pedersen commitments
to reserves and liabilities of an exchange, it can prove solvency by proving that the
quantity Cres · C−1

liab commits to a non-negative amount and thus, ares − aliab ≥ 0.
This suffices because Cres · C−1

liab is a Pedersen commitment to ares − aliab due to the
homomorphic property of Pedersen commitments.

1.4.1 Proof of Reserves

A proof of reserves protocol is used by a cryptocurrency exchange to prove that
it owns a certain amount of cryptocurrency. If privacy of the amount or outputs
owned by the exchange is not an issue, then proving reserves involves a straight-
forward proof of the ability to spend the exchange-owned outputs (for example, see

1.4 Proof of Solvency 7

[18]). The simplest way to publish a proof of reserves for an exchange is to reveal all
the addresses or account details it owns so that the customers are convinced about
the assets owned by the exchange. Another way could be to send all the reserves
it owns from all its addresses to a single addresses it owns. If amounts involved in
a transaction are public as in the case of Bitcoin, such a self-transaction would be
a proof of the exchange’s reserves. For example, in 2011, Mt. Gox cryptocurrency
exchange transferred 424,242 bitcoins from its wallets to a previously revealed Bit-
coin address [19]. Information of an exchange’s addresses or accounts and the total
assets it owns are crucial for aspects of its business. Thus, non-private proof of
reserves protocols are unlikely to be adopted by exchanges as they may reveal busi-
ness strategy. Privacy-preserving proof of reserves protocols have been proposed
for Bitcoin [15, 20], Monero [16], and MimbleWimble [1]. In fact, the protocols
proposed by Decker et al [20] and Dagher et al [15] go one step further and give
a privacy-preserving proof of solvency, i.e. they prove that the reserves owned by
the exchange exceed its liabilities towards its customers. However, the work in [20]
relies on a trusted hardware assumption. And the proof of liabilities protocol in
[15] is secure only if every exchange customer checks the proof. In general, it seems
that designing proof of reserves protocols is easier than designing proof of liabilities
protocols as the former depend only the blockchain state while the latter depend on
the exchange’s private customer data.

Even without a robust proof of liabilities protocol, a privacy-preserving proof of
reserves protocol based on homomorphic commitments is valuable. Exchanges can
easily prove that Cres is a commitment to an amount which exceeds a base amount
abase. While the base amount may not be exactly equal to the total liabilities of
the exchange, it can be based on the trade volume data published by the exchange
[21]. This technique will help early detection of exchange hacks and exit scams. For
example, in Februrary 2019 the Canadian exchange QuadrigaCX claimed that it
had lost access to wallets containing customer funds due to the death (in December
2018) of their CEO who had sole custody of the corresponding passwords and keys.
But an official investigation found that the wallets had been empty since April
2018, several months before the CEO’s death [22, 23]. This discrepancy would have
been detected earlier if the exchange had been required to give perioidic proofs of
reserves. Realising the importance of proof of reserves as a tool in raising customer
confidence in crypto-exchanges leads us to the need for building better proofs in
terms of privacy, scalability and performance.

1.5 Organization of the Thesis 8

The main challenge in design of proofs of reserves is to preserve privacy and
confidentiality of exchanges but at the same time convince customers about an
exchange’s actual asset ownership. Regaining trust of the customers without com-
promising exchanges’ privacy is the primary motivation behind the design of better
proofs of reserves. Advanced cryptographic techniques make it possible to design
proofs of reserves which reveal nothing beyond an assertation of the form:

Exchange X owns ? amount of the cryptocurrency Y at time t.

Note that here we do not intend to reveal even the total amount. A publicly verifiable
proof backing up such a claim is a cryptographic tool known as a Non-Interactive
Zero-Knowledge proof.

1.5 Organization of the Thesis
After motivating the problem we are trying to address in this work, we will briefly
describe the cryptographic primitives necessary to understand our work in Chapter
2. We briefly discuss the literature in Chapter 3 which is necessary to understand the
latter chapters. In Chapter 4, we start with outlining the details of Grin and existing
state-of-the-art proof of reserves protocol for MimbleWimble-based cryptocurrencies.
We describe RevelioBP - a novel proof of reserves protocol for MimbleWimble-based
cryptocurrencies in Chapter 4 along with its security properties. We present the
Grin outputs’ amount confidentiality analysis in Chapter 5. Finally, we discuss all
the security proofs in detail in the Appendix A.

Chapter 2

Cryptographic Preliminaries

Elliptic-curve cryptography (ECC) is essentially a public-key cryptography system,
design of which is based on the algebraic structure of elliptic curves over finite fields
[24]. ECC enables significant reduction in memory usage as the public-key length
in ECC framework is much smaller than other public-key cryptography schemes
like RSA for the same security level. It is widely used for many applications like
encryption, digital signatures, pseudo-random generators and other tasks.

All cryptocurrencies are built on the Elliptic-curve cryptography framework.
The security of such systems depend on the security guarantees provided by the
ECC framework. We will see a couple of cryptographic assumptions which promise
us the security guarantees for cryptocurrency systems. Thus, before delving into the
details of proof of reserves protocols, it is worthwhile spending some time learning
about the background math of cryptocurrencies. Note that we assume familiarity
of the reader with basic concepts of group theory and modular arithmetic. A short
but sufficient primer on both of these topics in present in [25].

2.1 Notation
Let G = {G, q, g} be the description of a cyclic group G of prime order q with
generator g of G. Let h ∈ G be another random generator of G such that the
discrete logarithm relation between g and h is not known. Let Gn and Znq be the
n-ary Cartesian powers of sets G and Zq respectively. Group elements which are
Pedersen commitments are denoted by uppercase letters and randomly chosen group
elements are denoted by lowercase letters. Bold font denotes vectors. Inner product
of two vectors a,b ∈ Znq is defined as 〈a,b〉 := ∑n

i=1 ai ·bi where a = (a1, . . . , an),b =
(b1, . . . , bn). Further, Hadamard and Kronecker products are defined respectively

9

2.2 Basics of Elliptic Curves 10

as, a ◦ b := (a1 · b1, . . . , an · bn) ∈ Znq , a ⊗ c := (a1c, . . . , anc) ∈ Znmq where c ∈
Zmq . For a base vector g = (g1, . . . , gn) ∈ Gn, vector exponentiation is defined
as ga = ∏n

i=1 g
ai
i ∈ G. For a scalar u ∈ Z∗q, we denote its consecutive powers in

the form of a vector un := (1, u, u2, . . . , un−1). To represent the exponentiation
of all components of a vector a by the same scalar k ∈ Zq, we use a◦k to mean
(ak1, ak2, . . . , akn). If an element a is chosen uniformly from a set A, such a choice is
denoted by a $← A. We denote the relation Relation using the specified input and
witness as {(Public Input; Witness) : Relation}. We refer toA as a PPT adversary
which is a probabilistic Turing Machine that runs in polynomial time in the security
parameter λ. An interactive proof for the decision problem π is described as follows:

1. There are two participants, a prover P and a verifier V.

2. The proof consists of a specified number of rounds.

3. In the beginning, both participants get the same input.

4. In each round, the verifier challenges the prover, and the prover responds to
the challenge.

5. Both the verifier and the prover can perform some private computation.

6. At the end, the verifier states whether he was convinced or not.

2.2 Basics of Elliptic Curves
Let a, b ∈ R such that 4a3 + 27b2 6= 0. Let E be the set of solutions (x, y) ∈ R2 to
the equation

y2 = x3 + ax+ b. (2.1)

An elliptic curve over R is given by the set E ∪ {O} where O is known as the point
at infinity. An example of an elliptic curve over R is given in Figure 2.1. Note that
the condition 4a3 + 27b2 6= 0 ensures that the curve does not have repeating roots.
This condition is necessary in the discussion of elliptic curve groups.

2.2.1 Point Addition in Elliptic Curves

The set E ∪ {O} needs to be an algebraic group for us to be able to define
operations on it. Thus, we define a group operation over E ∪ {O} known as point
addition. Suppose we have two points P = (x1, y1), Q = (x2, y2) ∈ R× R such that
x1 6= x2. We show them by blue and yellow coloured points in Figure 2.2(a). We

2.2 Basics of Elliptic Curves 11

−4 −2 2 4

−4

−2

2

4

x

y

Figure 2.1: An elliptic curve given by the equation y2 = x3 − x+ 2 over R

draw a line passing through P and Q. As the degree of an elliptic curve equation is
3, any non-tangent line must intersect the curve in 3 distinct points. Suppose the
line passing through P and Q intersects the curve at point R′ = (x3,−y3) ∈ R×R,
shown in orange colour. We define the result of point addition of points P and Q to
be the point R which is the mirror reflection of R′. Therefore, we have R = (x3, y3)
shown in red colour. Simple calculation shows that given P = (x1, y1), Q = (x2, y2)
and x1 6= x2, point addition gives us P +Q = (x3, y3) such that

x3 =
(
y2 − y1

x2 − x1

)2
− x1 − x2, y3 =

(
y2 − y1

x2 − x1

)
(x1 − x3)− y1. (2.2)

Now if P and Q are such that x1 = x2 but y1 = −y2, the line passing through
P and Q is vertical and possibly intersects the curve at infinity. In this case, we
define the point addition operation as P + Q = O. Therefore, the special point
O acts as an identity point in the group E ∪ {O}. Further, if we have P = Q,
i.e. x1 = x2, y1 = y2 6= 0, we draw tangent to the curve at point P . As the
degree of the curve is 3, any tangent will intersect the curve at one and only one
point, say point R′. The result R in this case is again the mirror reflection of point
R′ about the x-axis. The addition of a point to itself is known as point doubling.
The explicit formula for point doubling of point P = (x1, y1) can be written as
P + P = 2P = (x2, y2) such that

x2 =
(

3x2
1 + a

2y1

)2

− 2x1, y2 =
(

3x2
1 + a

2y1

)
(x1 − x2)− y1. (2.3)

The point addition operation is closed in the set E ∪ {O} by construction.
Further, O acts as an identity element in the set E ∪ {O}. For each point P ∈ E,
we can find its inverse Q ∈ E as its reflection about the x-axis as for such cases, we
have P +Q = O. Therefore, the set E ∪ {O} is a group under point addition.

2.2 Basics of Elliptic Curves 12

x

y

x

y

(a) x1 6= x2 (b) x1 = x2, y1 = −y2

x

y

(c) x1 = x2, y1 = y2 6= 0

Figure 2.2: Point addition in elliptic curves over R

In practice, we use elliptic curves over finite fields instead of real numbers. The
group operations are now defined over an underlying finite field F . The division by
a non-zero field element x ∈ F is interpreted as multiplication by its multiplicative
inverse x−1. Similarly, subtraction of a field element x ∈ F is interpreted as addition
by its additive inverse −x. This is the basis of the elliptic curve cryptography used
in modern day systems except that of For example, Bitcoin and Grin cryptocurrency
systems use the prime-ordered elliptic curve secp256k1 [26].

Note that from hereon we use multiplicative notation to denote group operation
on elliptic curves G on finite fields Fq for a large prime q. Lastly, addition of a
point P ∈ G for k times is shown as scalar multiplication in additive notation and
exponentiation in multiplicative respectively.

P + P + · · ·+ P︸ ︷︷ ︸
k times

= kP ∈ G.

2.3 Cryptographic Assumptions 13

Similarly, in multiplicative notation, such an operation is called as exponentiation
and is shown below

P · P · . . . · P︸ ︷︷ ︸
k times

= P k ∈ G.

2.3 Cryptographic Assumptions
Every practical cryptographic system is built on certain hardness assumptions. For
example, the widely popular RSA digital signature algorithm was based on the
assumption that it computationally hard to factorize big primes [27]. Elliptic curve
cryptography is similarly based on the assumption that the Discrete Log Problem is
difficult to be solved by a computationally bounded adversary.

Definition 2.3.1 (Discrete Log Relation) For all PPT adversaries A and for
all n ≥ 2, ∃ a negligible function µ(λ) s.t

Pr
[G = Setup(1λ), g1, . . . , gn ← G ;

:∃ai 6= 0 ∧∏n
i=1 g

ai
i = 1

a1, . . . , an ∈ Zp ←A(G, g1, . . . , gn)

]
≤ µ(λ)

We say ∏n
i=1 g

ai
i = 1 is a non trivial discrete log relation between g1, . . . , gn. If the

Discrete Log Relation assumption stands, it implies that no PPT adversary can find
a non-trivial relation between randomly chosen group elements. This is known as
the Discrete Log Problem.

We use additional cryptographic assumptions such as Decisional Diffie-Hellman
and its variants as described in [28].

2.4 Cryptographic Commitments
Cryptographic commitments are an important preliminary widely used to anonymise
data like amounts. We also briefly discuss some key properties of commitments of
our interest.

Definition 2.4.1 (Commitments) A non-interactive commitment consists of two
PPT algorithms (Setup, Com). For a message x ∈Mpp (message space), the algo-
rithm proceeds as follows:

1. public parameters pp← Setup(1λ) for security paramter λ

2. Compp : Mpp ×Rpp → Cpp, where Rpp is randomness space

3. r ← Rpp and compute com = Compp(x; r)

2.4 Cryptographic Commitments 14

Definition 2.4.2 (Homomorphic Commitments) A homomorphic commit-
ment is a non-interactive commitment such that Mpp, Rpp, Cpp are all abelian
groups, and ∀ x1, x2 ∈Mpp, r1, r2 ∈ Rpp, we have

Com(x1; r1) + Com(x2; r2) = Com(x1 + x2; r1 + r2)

Definition 2.4.3 (Hiding Commitment) A commitment scheme is said to be
hiding if for all PPT adversaries A, ∃µ(λ), a negligible function such that,

∣∣∣∣∣∣∣∣∣Pr

 b’=b
pp← Setup(1λ);
(x0, x1) ∈M2

pp ←A(pp), b← {0, 1}, r ← Rpp,

com = Com(xb; r), b′ ←A(pp, com)

− 1
2

∣∣∣∣∣∣∣∣∣ ≤ µ(λ)

where the probability is over b′, r, Setup and A. For perfectly hiding schemes, µ(λ) =
0.

In simple words, a commitment scheme is hiding if it is impossible for a compu-
tationally bounded adversary to find what the message is hidden in a commitment
or what randomness was used in computing the commitment.

Definition 2.4.4 (Binding Commitment) A commitment scheme is said to be
binding if for all PPT adversaries A, ∃µ(λ), a negligible function such that,

Pr
 Com(x0; r0) = Com(x1; r1) ∧ x0 6= x1

pp← Setup(1λ),
x0, x1, r0, r1 ←A(pp)

 ≤ µ(λ)

where the probability is over Setup and A. Again, if µ(λ) = 0 then we say the
scheme is perfectly binding.

A commitment scheme is known as binding if it is impossible for a computa-
tionally bounded adversary to change the message a commitment commits to once
it has published the commitment to the original message.

Definition 2.4.5 (Pedersen Commitment) Mpp,Rpp = Zp, Cpp = G of
order p.

1. Setup: g, h← G

2. Com(x; r) = (gxhr)

Definition 2.4.6 (Pedersen Vector Commitment) Mpp = Znp , Rpp = Zp,
Cpp = G of order p.

1. Setup: g = (g1, . . . , gn), h← G

2.5 Zero-Knowledge Arguments of Knowledge 15

2. Com(x = (x1, . . . , xn); r) = (hrgx)

The Pedersen vector commitment is perfectly hiding and computationally bind-
ing under the discrete logarithm assumption. This means that no matter how much
computational power an adversary possesses, he cannot find the message hidden in
a Pedersen commitment. Further, for a computationally bounded adversary, it is
infeasible to find another opening to a Pedersen commitment once he has committed
it to original message.

2.5 Zero-Knowledge Arguments of Knowledge
Zero knowledge proofs are a powerful cryptographic tool which allow a prover to
prove the validity of an assertion without revealing any other information about the
secret owned. We give the formal definitions of zero knowledge proofs and their
properties along with an example. In a formal context, a proof implies security
guarantees against any adversary while security of an argument stands valid only
for a computationally bounded adversary. From hereon, we will interchangeably use
the terms proof and argument as we consider only PPT adversaries.

2.5.1 Zero-Knowledge Arguments

A protocol in which a prover convinces a verifier that a statement is true
without revealing any information about why it holds is known as a Zero-knowledge
argument. An argument is a proof only if the prover is computationally bounded
and some computational hardness holds. Hereafter, we use the terms proof and
argument interchangeably.

We illustrate the idea of zero-knowledge arguments of proof using the example
of Ali-Baba’s secret cave∗ [29].

In the above example, Peggy knows the secret word used to open a mysterious
door in a cave. The cave is shaped like a horse-hoe. The entrance is on one side and
the magic door blocking the opposite side. Victor wants to know whether Peggy
knows the secret word; but Peggy, does not want to reveal her knowledge (the secret
word) to Victor or to reveal the fact of her knowledge to anyone in the world.

Peggy and Victor run the protocol described in figure 2.3. Provided she really
does know the magic word, and the path she enters and path Victor asks her to
come from are same, then it’s trivial for Peggy to succeed and Victor to believe

∗Figure courtesy: https://en.wikipedia.org/wiki/Zero-knowledge_proof.

https://en.wikipedia.org/wiki/Zero-knowledge_proof

2.5 Zero-Knowledge Arguments of Knowledge 16

(a) Peggy chooses a path uniformly from A, B without Victor knowing.

(b) Victor asks her to come out of the cave from path A.

(c) If Peggy had entered from path A, she returns trivially. Otherwise,
she could open the door using the secret key and return from path A.

Figure 2.3: Example of a zero knowledge proof

that she actually knows the secret key. Further, if the chosen path by Peggy and
asked by Victor doesn’t match, even then she could open the door and return from
a desired path. If they were to repeat this protocol many times, say 15 times in
a row, her chance of successfully "guessing" all of Victor’s requests would become
exponentially small (about three in a lakh).

For zero-knowledge arguments presented in this report, we will consider ar-
guments consisting of three interactive probabilistic polynomial time algorithms
(Setup,P,V). These algorithms are described by:

1. Setup: σ ← Setup(1λ), σ is common reference string

2. P: prover, V: verifier

3. Transcript tr ← 〈P,V〉

2.5 Zero-Knowledge Arguments of Knowledge 17

4. 〈P,V〉 = b, b = 0 if the verifier rejects or b = 1 accepts

Further, we define the relation R and the CRS-dependent language as:

R := {(σ, u, w) ∈ {0, 1}∗ × {0, 1}∗ × {0, 1}∗ : w is a witness for u | σ}

Lσ := {x |∃w ∈ (σ, u, w) ∈ R}

So, Lσ is essentially the set of statements x that have a witness w in the relation
R.

2.5.2 Defining Zero-Knowledge Arguments of Knowledge

To mathematically define the notion of zero-knowledge and zero-knowledge
arguments, we will provide the necessary definitions below.

Definition 2.5.1 (Argument of Knowledge) The triple (Setup,P,V) is called
an argument of knowledge for relation R if it is perfectly complete and has compu-
tational witness-extended emulation.

Definition 2.5.2 (Perfect completeness) (Setup,P,V) has perfect completeness
if for all non-uniform polynomial time adversaries A

Pr
[

(σ, u, w) 6∈ R or 〈P(σ, u, w),V(σ, u)〉 = 1
σ ← Setup(1λ)
(u,w)←A(σ)

]
= 1

Perfect completeness implies that if a statement is actually true, then an honest
verifier is convinced with probability 1 about the truth of the statement by an honest
prover.

Definition 2.5.3 (Computational Witness-Extended Emulation)
(Setup,P,V) has witness-extended emulation if for all deterministic polyno-
mial time P ∗ there exists an expected polynomial time emulator E such that for all
pairs of interactive adversaries A1,A2 there exists a negligible function µ(λ) such
that

∣∣∣∣∣∣Pr

 A1(tr) = 1
σ ← Setup(1λ,)
(u, s)←A2(σ),
tr ← 〈(P∗(σ, u, s), V (u, s)〉

−

Pr

 A1(tr) = 1∧
σ ← Setup(1λ,)
(u, s)←A2(σ),

(tr accepted =⇒ (σ, u, w) ∈ R) (tr, w)← EO(σ, u)


∣∣∣∣∣∣ ≤ µ(λ)

2.5 Zero-Knowledge Arguments of Knowledge 18

where the oracle is given by O = 〈(P∗(σ, u, s), V (u, s)〉, and permits rewinding
to a specific point and resuming with fresh randomness for the verifier from this
point onwards. We can also define com- putational witness-extended emulation by
restricting to non-uniform polynomial time adversaries A1 and A2.

Computational witness-extended emulation implies that when an adversary pro-
duces an argument to convince the verifier with some probability, then we have a
corresponding emulator producing identically distributed argument with same prob-
ability, but also a witness.

Definition 2.5.4 (Public coin) An argument of knowledge (Setup,P,V) is called
public coin if all messages sent from the verifier to the prover are chosen uniformly
at random and independent of the prover’s messages, i.e., the challenges correspond
to the verifier’s randomness ρ.

Definition 2.5.5 (Zero Knowledge Argument of Knowledge) An argument
of knowledge (Setup,P,V) is zero knowledge if it reveals no information about w
apart from what could be deduced from the fact that (σ, u, w) ∈ R.

An argument of knowledge is zero knowledge if it does not leak information
about w apart from what can be deduced from the fact that (σ, u, w) ∈ R. More
explicitly, we note that, a zero knowledge argument of knowledge ensures that no
PPT adversary (or verifier) can ever recover w given it’s relation with σ, u.

Definition 2.5.6 (Perfect Special Honest-Verifier Zero-Knowledge) A
public coin argument of knowledge (Setup,P,V) is a perfect special honest verifier
zero knowledge (SHVZK) argument of knowledge for R if there exists a probabilistic
polynomial time simulator S such that for all pairs of interactive adversaries
A1,A2

Pr

 (σ, u, w) ∈ R ∧A1(tr) = 1
σ ← Setup(1λ,)
(u,w, ρ)←A2(σ),
tr ← 〈(P(σ, u, s), V (σ, u; ρ)〉



= Pr

 (σ, u, w) ∈ R ∧A1(tr) = 1
σ ← Setup(1λ,)
(u,w, ρ)←A2(σ),
tr ← S(u, ρ)



2.5 Zero-Knowledge Arguments of Knowledge 19

PSHVZK AoK implies that even if an adversary chooses a distribution over
statements and witnesses, it isn’t able to distinguish between simulated transcript
and honestly generated transcript for u ∈ Lσ.

We will be using these definitions of Zero knowledge argument and its properties
in the discussion further without redefining them, unless explicitly stated.

Chapter 3

Literature Survey

In this chapter, we briefly discuss the MimbleWimble protocol and Grin, techni-
cal details of recently proposed protocols like Improved Inner Product argument,
Bulletproofs [2] and Omniring [28] which inspire the design of RevelioBP protocol.
We also describe Revelio protocol which is the current state-of-the-art proof of re-
serves protocol for MimbleWimble based cryptocurrencies. Finally, we will discuss
a few limitations of Revelio which motivated us to design a better proof of reserves
protocol.

3.1 Improved Inner-Product Argument
We will define Inner-Product argument which is a proof construction for proving
to a verifier that the prover knows two vectors which are hidden in a Pedersen
commitment and the the inner product of those two vectors is known.

The inputs to the inner-product argument are independent generators g,h ∈
Gn, P ∈ G and a scalar c ∈ Zq. P is a binding vector commitment to a,b.
The argument lets the prover convince a verifier that the prover knows two vectors
a,b ∈ Znq such that

P = gahb ∧ c = 〈a,b〉

The inner product argument is an efficient proof system for the language:

LIP = {(g,h ∈ Gn, P ∈ G, c ∈ Zq︸ ︷︷ ︸
crs

; a,b ∈ Znq︸ ︷︷ ︸
wit

) : P = gahb ∧ c = 〈a,b〉︸ ︷︷ ︸
stmt

} (3.1)

Here, crs, stmt, wit are common reference string, statement and witness respectively
as defined in Section 2.1. Clearly, the simplest proof system for (3.1) is: P sends V
(a,b) ∈ Znq , requiring to send 2n elements to V. We wish to build an efficient proof
which requires much less elements to be exchanged. Recall, the communication

20

3.1 Improved Inner-Product Argument 21

cost directly affects efficiency of a protocol.

Note that the witness-CRS relation in (3.1) is essentially an AND of two different
relations. To simplify things to start with the inner-product argument, we propose
to design a proof system for the language:

LIP_mod = {(g,h ∈ Gn, u, P ∈ G︸ ︷︷ ︸
crs

; a,b ∈ Znq︸ ︷︷ ︸
wit

) : P = gahb · u〈a,b〉︸ ︷︷ ︸
stmt

} (3.2)

We will first show a protocol or a proof system for language defined in (3.2) and
then prove that the same proof system gives a proof system for language in (3.1)
with same complexity. Define a hash function H : Z2n+1

q → G such that for input
vectors a1, a′1,b1,b′1 ∈ Zn/2

q , c ∈ Zq

H(a1, a′1,b1,b′1, c) := ga1
[:n/2] · g

a′1
[n/2:] · h

b1
[:n/2] · h

b′1
[n/2:] · u

c ∈ G (3.3)

Further, we notice that in (3.2), we can write P as:

n′ = n/2, a = (a[:n′], a[n′:]), b = (b[:n′],b[n′:]),

P = H(a[:n′], a[n′:],b[:n′],b[n′:], 〈a,b〉)

We also note that H is additively homomorphic in its inputs, i.e

H(a1, a′1,b1,b′1, c1) ·H(a2, a′2,b1,b′2, c2) =(
ga1

[:n/2] · g
a′1
[n/2:] · h

b1
[:n/2] · h

b′1
[n/2:] · u

c1
)
·
(
ga2

[:n/2] · g
a′2
[n/2:] · h

b2
[:n/2] · h

b′2
[n/2:] · u

c2
)

=⇒ H(a1, a′1,b1,b′1, c1) ·H(a2, a′2,b1,b′2, c2)

=
(
ga1+a2

[:n/2] · g
a′1+a′2
[n/2:] · h

b1+b2
[:n/2] · h

b′1+b′2
[n/2:] · u

c1+c2
)

= H(a1 + a2, a′1 + a′2,b1 + b2,b′1 + b′2, c1 + c2)

We now describe a protocol for the language LIP_mod (3.2) in argument of knowledge
3.1.

We are denoting the first and second halves of a vector a by color coding to simplify visual-
ization, a[:n′] as the first half and a[n′:] by second half.

3.1 Improved Inner-Product Argument 22

3.1.1 Inner-Product Argument

Figure 3.1: Argument of knowledge for LIP_mod

Setup(λ,LIP_mod):

Generate following elements randomly from G: g $← Gn,h $← Gn, u $← G

crs = (G, q,g,h, u, P), wit = (a,b) ∈ Znq , stmt: P = ga · hb · u〈a,b〉

〈P(crs, stmt, wit),V(crs, stmt)〉 :

P:

(i) n′ = n/2

(ii) L = H(0n′ , a[:n′],b[n′:],0n
′
, 〈a[:n′],b[n′:]〉)

(iii) R = H(a[n′:],0n
′
,0n′ ,b[n′:], 〈a[n′:],b[n′:]〉)

P −→ V: L,R ∈ G

V: x $← Zq, V −→ P: x

P:

(i) a′ = x · a[:n′] + x−1 · a[n′:]

(ii) b′ = x−1 · b[:n′] + x · b[n′:]

P −→ V: a′,b′ ∈ Zn′q

V:

(i) P ′ = L(x2) · P ·R(x−2)

(ii) P ′ ?= H(x−1a′, xa′, xb′, x−1b′, 〈a′,b′〉) // Verification equation

The verifier is convinced because indeed the left hand size of the verification
equation (1) by the verifier can be written as:

Lx
2 · P ·Rx−2 = H(a[:n′] + x−2a[n′:], x

2a[:n′] + a[n′:],

x2b[n′:] + b[:n′],b[n′:] + x−2b[:n′], 〈a′,b′〉)

3.1 Improved Inner-Product Argument 23

The key features of this approach are listed below.

1. This proof system requires sending n+ 2 elements.

2. To extract a valid witness a,b ∈ Znq from a successful prover, we need to rewind
the prover three times. After the prover sends L,R we rewind the prover three
times to obtain three tuples (xi, a′i,b′i) for i = 1, 2, 3 such that for all distinct
xi:

L(x2
i) · P · L(−x2

i) = H(x−1a′i, xia′i, xib′, x−1
i b′i, 〈a′,b′i〉) (3.4)

3. We can now find ν1, ν2, ν3 ∈ Zq such that,

3∑
i=1

x2
i νi = 0,

3∑
i=1

νi = 1,
3∑
i=1

x−2
i νi = 0

4. Thus, a,b can be found by computing:

a =
3∑
i=1

(νi · x−1
i a′i ‖ νi · x1

ia′i) ∈ Znq

b =
3∑
i=1

(νi · x−1
i b′i ‖ νi · x1

ib′i) ∈ Znq

5. Can we still improve? Observe that the test in the verification equation (1) is
equivalent to:

P ′
?=
(
gx−1

[:n′] ◦ gx[n′:]
)a′
·
(
hx[:n′] ◦ hx

−1

[n′:]

)b′
· u〈a′,b′〉

6. Thus the prover can recursively engage in an inner-product argument for P ′

with respect to generators:

(gx−1

[:n′] ◦ gx[n′:],hx[:n′] ◦ hx
−1

[n′:], u)

7. We hope to get a total communication of Protocol 2 to be only 2dlog2(n)e
elements in G plus 2 elements in Zq. Let’s see how we go about doing it in the
next section.

3.1 Improved Inner-Product Argument 24

3.1.2 Recursive Inner-Product Argument

Figure 3.2: Improved Inner-Product Argument for LIP_mod

Setup(λ,LIP_mod):

Generate following elements randomly from G: g $← Gn,h $← Gn, u $← G

crs = (G, q,g,h, u, P), wit = (a,b) ∈ Znq , stmt: P = ga · hb · u〈a,b〉

〈P(crs, stmt, wit),V(crs, stmt)〉 :

P: If n′ = 1:

P −→ V: a, b ∈ Zq

V:

(i) c = a · b

(ii) P ?= gahbuc // Single exponentiation verification equation

P: Else n′ > 1:

(i) n′ = n/2 where n = |g|

(ii) cL = 〈a[:n′],b[n′:]〉 ∈ Zq,

(iii) cR = 〈a[n′:],b[n′:]〉 ∈ Zq

(iv) L = ga[:n′]
[n′:] · h

b[n′:]
[:n′] · ucL ∈ G

(v) R = ga[n′:]
[:n′] · h

b[n′:]
[n′:] · ucR ∈ G

P −→ V: L,R ∈ G

V: x $← Zq, V −→ P: x

P, V:

(i) g′ = gx−1

[:n′] ◦ gx[n′:] ∈ G′

(ii) h′ = hx[:n′] ◦ hx
−1

[n′:] ∈ G′

(iii) P ′ = Lx
2
PRx−2 ∈ G

P:

3.1 Improved Inner-Product Argument 25

(i) a′ = x · a[:n′] + x−1 · a[n′:] ∈ Zn′q

(ii) b′ = x−1 · b[:n′] + x · b[n′:] ∈ Zn′q

Set crs’ = (G, q,g′,h′, u, P ′), wit’ = (a′,b′) ∈ Znq , stmt’: P ′ = (g′)a′ ·(h′)b′ ·u〈a′,b′〉

Run Protocol 3.2 with 〈P(crs’, stmt’, wit’),V(crs’, stmt’)〉 // Recursion step

In the above recursive inner-product protocol, the resulting depth is of the
order of log2(n). The total communication in this protocol is 2×dlog2(n)e elements
in G and 2 elements in Zq, i.e the prover sends the following in the specified order:

(L1, R1), . . . , (Llog2(n), Rlog2(n)), a, b

Now, coming back to the language defined in (3.1), we now are in an position to
design a proof system for (3.1). The improved inner product protocol for the relation
(3.1) is presented in Figure 3.3.

Figure 3.3: Improved Inner-Product Argument for LIP (3.1)

Setup(λ,LIP):

Generate following elements randomly from G: g $← Gn,h $← Gn, u $← G

crs = (G, q,g,h, u, P), wit = (a,b) ∈ Znq , stmt: P = ga · hb · u〈a,b〉

〈P(crs, stmt, wit),V(crs, stmt)〉 :

V: x $← Zq, V −→ P: x

P:

(i) P ′ = P · Ux·c

Set crs’ = (G, q,g,h, ux, P ′), wit’ = (a,b) ∈ Znq

Run Protocol 3.2 with 〈P(crs’, stmt, wit’),V(crs’, stmt)〉

Therefore, the above is the improved inner product argument for the language
defined in (3.1). We now state the Inner-Product Argument which shows that
Protocol 3.3 is a proof system for (3.1).

3.2 Bulletproofs 26

Theorem 3.1 (Improved Inner-Product Argument) The argument presented
in Figure 3.3 for the relation (3.1) has perfect completeness and statistical witness-
extended-emulation for either extracting a non-trivial discrete logarithm relation be-
tween g,h, u or extracting a valid witness a, b.

Proof: The proof for above theorem is given in Appendix B in [2].

3.2 Bulletproofs
Bulletproofs [2] is the state-of-art range proof with logarithmic communication size.
A range proof is a zero-knowledge proof showing that a given number lies in a
particular range without revealing the number itself. In this section, we review the
logarithmic range proof protocol presented in Bulletproofs paper.

We wish to design a proof system for the following relation which is equivalent
to the range proof language

LBP =
{

(g, h, V ∈ G, n ∈ N︸ ︷︷ ︸
crs

; v, γ ∈ Zq︸ ︷︷ ︸
wit

) : V = gvhγ ∧ v ∈ [0, 2n)︸ ︷︷ ︸
stmt

}
(3.5)

Let aL = (a1, . . . , an) ∈ {0, 1}n be the vector containing the bits of v, v =
〈aL,2n〉. Recall that 2n = (1, 21, 22, . . . , 2n−1) ∈ Znq . Prover P convinces the verifier
that v ∈ [0, 2n − 1] by proving that:

1. It knows aL ∈ Znq , v, γ ∈ Zq such that V = gvhγ

2. 〈aL,2n〉 = v and aL ◦ aR = 0n and aR = aL − 1n

To do so, we take a random linear combination (chosen by the verifier) of the
constraints to use inner-product argument. Note that 〈b,yn〉 = 0, y ∈ Zq =⇒ b =
0n. For randomly chosen y, z ∈ Zq, we can write:

z2 · 〈aL,2n〉+ z · 〈aL − 1n − aR,yn〉+ 〈aL, aR ◦ yn〉 = z2 · v (3.6)

=⇒
〈
aL − z · 1n︸ ︷︷ ︸

left secret

, yn ◦ (aR + z · 1n) + z2 · 2n︸ ︷︷ ︸
right secret

〉
= z2 + δ(y, z) (3.7)

δ(y, z) = (z − z2) · 〈1n,yn〉 − z3〈1n,2n〉

Here, δ(y, z) ∈ Zq is a quantity that the verifier can easily calculate since
y, z ∈ Z?q are the challenges generated by the verifier himself. So now, if the prover
could send to the verifier the two vectors in the inner product in (3.7), then the

3.2 Bulletproofs 27

verifier could check (3.7) using the commitment V to v. Thus the verifier would be
convinced that v ∈ [0, 2n − 1]. But there’s an issue in this approach. The verifier
can easily extract aL from the first vector which the prover sent for calculation of
inner product.

To address this issue, by introducing two additional blinding terms sL, sR ∈ Znq
to blind these vectors. Thus, we define two linear vector polynomials
l(X), r(X) ∈ Znq [X] and t(X) ∈ Zq as follows:

l(X) = aL − z · 1n + sL ·X

r(X) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n

t(X) = 〈l(X), r(X)〉 = t0 + t1 ·X + t2 ·X2

where

t0 =
〈
aL − z · 1n, yn ◦ (aR + z · 1n) + z2 · 2n

〉
t1 =

〈
aL − z · 1n,yn ◦ sR

〉
+
〈
sL,

(
yn ◦ (aR + z · 1n) + z2 · 2n

) 〉
t2 =

〈
sL,yn ◦ sR

〉
The constant term of 〈l(X), r(X)〉 are the required inner product vectors in

(3.7). Now, the prover can publish l(x) and r(x) for one x ∈ Zq. The constant term
of t(X), denoted t0, is the result of the inner product. The prover needs to convince
the verifier that this t0 satisfies t0 = z2 · v + δ(y, z). To so do, the prover commits
to the remaining coefficients of t(X), t1, t2 ∈ Zq.

Figure 3.4: Inner Product Range Proof for LBP

Setup(λ,LBP):

Generate following elements randomly from G: h $← G, g,h $← Gn

Set: (crs, stmt, wit) as defined in the language LBP(G, q,g,h, h) in (3.5)

〈P(crs, stmt, wit),V(crs, stmt)〉 :

P:

(i) Set aL ∈ {0, 1}n such that aL,2n = v

(ii) Set aR = aL − 1n ∈ Znq

(iii) α← Zq

3.2 Bulletproofs 28

(iv) A = hαgaLhaR

(v) sL, sR ← Znq

(vi) ρ← Zq

(vii) S = hρgsLhsR

(viii) τ1, τ2 ← Zq

(ix) Ti = gtihτi , i ∈ {1, 2}

P −→ V: A, S, T1, T2 ∈ G

V: x, y, z $← Zq, V −→ P: x, y, z

P:

(i) l = l(x) = aL − z · 1n + sL · x ∈ Znq

(ii) r = r(x) = yn ◦ (aR + z · 1n + sR ·X) + z2 · 2n ∈ Znq

(iii) t̂ = 〈l, r〉 ∈ Zq

(iv) τx = τ2 · x2 + τ1 · x+ z2 · γ ∈ Zq

(v) µ = α + ρ · x ∈ Zq

P −→ V: l, r ∈ Znq , τx, µ, t̂ ∈ Zq

V:

i h′i = h
(y−i+1)
i ∈ G,∀i

(ii) P = A · Sx · g−z · (h′)z·yn+z2·2n ∈ G

(iii) t̂ ?= 〈l, r〉 ∈ Zq // t̂ was computed correctly

(iv) gt̂hτx
?= V z2 · gδ(y,z) · T x1 · T x

2
2 // t̂ satisfies t0 + t1x + t2x2

(v) P ?= hµ · gl · (h′)r // Check if l = l(x) and r = r(x)

Some key observations from the above protocol in Figure 3.4 are:

1. In this protocol, P sends (l, r), whose size is linear in n.

2. The total communication cost in this protocol is 2n + 4 elements in G and 3
elements in Zq.

3.2 Bulletproofs 29

3. The verifier, to check if the received l, r are actually l(x), r(x) and also check
if t(x) = 〈l, r〉, first, switches the generators of the commitment from h ∈ Gn

to h′ = h(y−n).

4. Now, A becomes a Pedersen vector commitment to (aL, aR◦yn) w.r.t (g,h′, h).
Similarly, S is now a Pedersen vector commitment to (sL, sR ◦ yn).

5. If all three conditions marked by red rectangle result in a positive answer to
the verifier, (s)he accepts and thus prover succeeds.

Theorem 3.2 (Range Proof) The range proof presented above has perfect com-
pleteness, perfect special honest verifier zero-knowledge, and computational witness
extended emulation.

Proof: The range proof is a special case of the aggregated range proof with m = 1.
Refer Appendix C in [2] for the proof of the theorem 3.2.

In the above protocol, prover had to transfer l ∈ Znq and r ∈ Znq resulting in
proof size proporional to 2n. For a proof whose size is logarithmic in n, we can
eliminate the transfer of l and r using the inner-product argument. We also observe
that vectors (l, r) are not secret and hence a protocol that only provides soundness∗

is sufficient.
Concretely, observe that verifying first and third checks of the protocol in Figure

3.4 is the same as verifying that the witness (l, r) satisfies the inner product relation
(3.1) on public input (g,h′, Ph−µ, t̂), where P is a Pedersen vector commitment to
vectors l, r ∈ Znq whose inner product is t̂.

P
?= hµ · gl · (h′)r

t̂
?= 〈l, r〉 ∈ Zq

{(g,h ∈ Gn, P ∈ G, c ∈Zq; a,b ∈ Znq) : P = gahb ∧ c = 〈a,b〉}

Thus, using the inner product argument, the total communication cost reduces
down to 2dlog2(n)e+ 4 elements in G and 5 elements in Zq.

∗Soundness is the property of only being able to prove "true" things. Completeness is the
property of being able to prove all true things. [30]

3.3 Omniring 30

3.3 Omniring
Omniring [28] was proposed as a novel RingCT scheme which (i) did not require
any trusted setup, (ii) had a proof size logarithmic in the size of the ring, and
(iii) allowed to share the same ring between all source addressed in a transaction,
thereby enabling significantly improved privacy. Omniring provides key insights in
the direction of generalising Bulletproofs [2] framework for RingCT applications.

3.3.1 Main Idea

We start with a ring R = (P1, P2, . . . , Pn) ∈ Gn of public keys of the form
Pi = gxi where g ∈ G is the group generator and xi ∈ Zq is the secret key, for all
i ∈ [n]. Suppose we own the public keys (addresses) at indices (i1, i2, . . . , is) such
that each ij ∈ [n] for all j ∈ [s] and s < n. This implies that we know the secret
keys x = (xi1 , xi2 , . . . , xis). We would like to prove the knowledge of tuples (ij, xij)
for j ∈ [s]. For all j ∈ [s], let us define unit vectors ej ∈ {0, 1}n such that it has 1
only in position ij. Therefore,

1 = g−xjRej for all j ∈ [s].

Combining the above equations using powers of a scalar challenge u ∈ Zq, we get

=⇒ 1 = g−〈u
s,x〉 ·R

∑s

j=1 u
j−1ej . (3.8)

We will refer to equation (3.8) as the main equality. By embedding the bases (g‖R)
and secrets a = (e1, e2, . . . , es, xi1 , xi2 , . . . , xis) in the main equality in form of a
Pedersen vector commitment, we can build an inner product relationship between
the secrets and challenges to use the Bulletproofs framework in building a RingCT.
However, the soundness of Bulletproofs is guaranteed because the elements in the
base vectors used in the Pedersen vector commitment are independent and uniformly
random. In this case, the prover might know the discrete log relationship between
some elements in R since he owns multiple addresses. To overcome this, Lai et al.
[28] proposed using base vector of the form:

gw := (g‖R)◦w ◦ p,

where w ∈ Zq and p $← Gn+1. A PPT adversary cannot find the discrete log relation
between the elements of the newly constructed base gw (refer to Lemma 4.1). Note
that ga

w = ga
w′ for any w,w′ ∈ Zq because of the main equality. Therefore, using the

new base vector for two different challenges w,w′ ∈ Zq, we can run a Bulletproofs-like
protocol twice and extract the secret vectors. This ensures that the Bulletproofs-like
protocol preserves soundness.

3.4 Overview of MimbleWimble & Grin 31

3.4 Overview of MimbleWimble & Grin
MimbleWimble [9] is a blockchain protocol relying only on elliptic curve cryptogra-
phy and promises to provide scalability, privacy and fungibility all at once. Inter-
estingly, MimbleWimble does not have any addresses or accounts and the amounts
also are hidden using Pedersen commitments. The simple design of MimbleWimble
coupled with its privacy and scalability guarantees (which most existing blockchain
implementations fail to address collectively) is what makes it popular for use in
decentralized systems. Grin [7] and Beam [8] are cryptocurrency systems which are
powered by the MimbleWimble protocol.

3.4.1 Outputs in Grin

Amounts in MimbleWimble are hidden in Pedersen commitments known as
outputs. An output containing amount a ∈ {0, 1, . . . , 264 − 1} is of the form† P =
kG + aH where r ∈ Zq and G,H are generators of G. Note that the discrete log
relation between G and H is assumed to be unknown. The quantity k is called as
the blinding factor and it serves as the secret key of output P . Knowledge of k
implies ownership of the output. At the time of creation of new outputs, they are
accompanied by a range proof which proves that the amounts hidden in them lie in
a finite range.

3.4.2 Transactions in Grin

A Grin transaction consists of some inputs which are being spent and some
outputs in which the funds would be deposited. Note that the inputs in a transac-
tion are essentially outputs which were generated in some block in the past. Grin
transactions are of two types: (i) coinbase transactions, which transfer the block
mining rewards to miners and (ii) regular transactions, which makes up for amount
transfers in non-miners. Coinbase transactions do not contain any inputs and typ-
ically have just one output known as coinbase output. A regular Mimblewimble
transaction [31] includes the following:

(i) A set of inputs, that reference and spend a set of previous outputs,

(ii) A set of new outputs each with a range proof,

(iii) An transaction fee,
†We use additive notation in this section only to be consistent with the original MimbleWimble

protocol in [9].

3.4 Overview of MimbleWimble & Grin 32

(iv) A Schnorr signature whose private key is computed by taking the excess
amount (the sum of all output amounts plus the fee, minus the input amounts),

(v) The public key published with the Schnorr signature is known as kernel excess
and is of the form rG, r ∈ Zq.

We will refer to the collection of transaction fee, public key and signature as a kernel.
Note that a transaction can easily be validated by determining that the kernel excess
is a valid public key.

3.4.3 Transaction Aggregation

Transactions in a Grin block are aggregated before the block is added to the
blockchain to ensure unlinkability in inputs and outputs. Consider the following
example where we intend to aggregate two given regular transactions.

Inputs Outputs Excesses Fee
Tx#1 I1, I2 O1 K1 f1

Tx#2 I3 O2 K2 f2

Aggregated Tx I1, I2, I3 O1, O2 K1, K2 f1 + f2

Table 3.1: Example of Transaction Aggregation

However, there is a slight issue here. It is possible to try all combinations of inputs
and outputs to recover one of the transactions where the equality

∑
(Ouputs) +

∑
(Fees)H −

∑
(Inputs) = Kernel excess

satisfies. To mitigate this, the kernel excess is redefined from rG to (r − koffset)G
where r is the sum of output amounts plus fees minus input amounts and koffset is
a scalar in Zq. Thus, The kernel offset koffset is thus a blinding factor that needs to
be added to the excess value to ensure the commitments sum to zero as:

∑
(Ouputs) +

∑
(Fees)H −

∑
(Inputs) = Kernel excess + koffsetG

Further, if in a same block, some outputs generated in a transaction are spent
in the same block in another transaction, we can drain those outputs and inputs
from the block as the structure of each transaction does not actually matter. As
long as the sum of inputs and outputs cancels off, removing matching outputs would
not matter. This is known as cut-through.

3.4 Overview of MimbleWimble & Grin 33

Going a step further, all the blocks on the Grin blockchain can be considered as
individual transactions. Thus, the outputs generated at block height h1 which are
spent as inputs in block h2 also could be removed from the blockchain as they can be
considered intermediate transactions by the same logic as above. This significantly
improves scalability of MimbleWimble-based blockchains.

3.4.4 Grin Blocks

Let G be the secp256k1 elliptic curve group of order n. In Grin, coins are stored
in Pedersen commitments of the form C = kG+aH where k, a ∈ Fn are scalars and
G,H ∈ G are the generators of G with an unknown discrete logarithm with respect
to each other. The quantity a is the amount stored in C and k is a randomly chosen
scalar known as the blinding factor. A Grin block consists of the following:

(i) A block header from which a scalar koff ∈ Fn called the kernel offset can be
derived. The other header fields are not relevant to our discussion.

(ii) A list of L input commitments I1, I2, . . . , IL. This list is empty for blocks
without regular transactions. Each input commitment refers to an output
commitment in a previous block.

(iii) A list of M output commitments O1, O2, . . . , OM where M ≥ 1. Each output
commitment is tagged as either a coinbase output or a regular transaction
output. Each output commitment is also accompanied by a range proof to
prove that it commits to an amount in the range {0, 1, 2, . . . , 264 − 1}.

(iv) A list of N transaction kernels each of which contains a fee amount fi ∈ Fn
and a curve point Xi ∈ G called the kernel excess. Each kernel also contains
a Schnorr signature proving that Xi is of the form xiG for some xi ∈ Fn.
Each transaction kernel is also tagged either as a coinbase kernel or a regular
transaction kernel.

Refer to Figures 3.5, 3.6 for visual representation of a typical Grin block. Let
Icb ⊂ {1, 2, . . . ,M} be the set of indices corresponding to coinbase outputs and Iccb

be the set of the remaining indices corresponding to RTOs. Let Ick ⊂ {1, 2, . . . , N}
be the set of indices corresponding to coinbase kernels and Icck be the set of in-
dices corresponding to regular transaction kernels. A valid block has to satisfy the

3.4 Overview of MimbleWimble & Grin 34

Figure 3.5: A visual of the Dandelion protocol for transaction aggregation and the
process of cut-through. Note that the coinbase outputs are denoted as Ocb in blue
colour.

Figure 3.6: Inclusion of kernels and fees in a Grin block. Note that the total number
of transactions in a block are equal to the total number of kernels in a block. Also,
fcb = 0, the fees for coinbase transaction, for all Grin blocks.

following equations.

∑
i∈Icb

Oi −
(

N∑
i=1

fi

)
H − rH =

∑
i∈Ick

Xi, (3.9)

∑
i∈Ic

cb

Oi +
(

N∑
i=1

fi

)
H −

L∑
i=1

Ii =
∑
i∈Ic

ck

Xi + koffG. (3.10)

Here r = 60 × 109 is the block subsidy in nanogrin units. As the right hand sides
of both equations are commitments to the zero amount, the binding property of
Pedersen commitments and the range proofs imply that

(i) the total amount in the coinbase outputs of a block is r +∑N
i=1 fi and

3.5 Revelio - A MimbleWimble Proof of Reserves Protocol 35

(ii) the sum of the input amounts is equal to the sum of the transaction fees and
RTO amounts.

3.5 Revelio - A MimbleWimble Proof of

Reserves Protocol
Revelio [1] was the first proof of reserves protocol for MimbleWimble backed cryp-
tocurrencies. It uses non-interactive zero-knowledge (NIZK) proofs of knowledge for
proving statements involving discrete logarithms which were originally introduced
by [32].

3.5.1 Proving Statements About Discrete Logarithms

Let G be a cyclic group of prime order q. Let G,G′, H be the generators of the
group such that the discrete log relation between any two of them is assumed to be
unknown. We will use additive notation to be consistent with the notation used in
Revelio paper. Revelio uses three particular types of NIZK proofs of knowledge as
defined below. Let H{0, 1}∗ → Zq be a cryptographic hash function modelled as a
random oracle. The scalar pair (α, β) ∈ Z2

q is called as the representation of X ∈ G
with respect to generators G,H such that X = αG+ βH.

Definition 3.1 A pair of scalars (c, s) ∈ Z2
q is a NIZK proof of knowledge of the

discrete log of an element X ∈ G with respect to a generator G if they satisfy

c = H(G,X, sG+ cX).

We will denote such a pair by PoK{α | X = αG}.

Definition 3.2 A triple of scalars (c, s1, s2) ∈ Z3
q is a NIZK proof of knowledge and

equality of the representations of X, Y ∈ G with respect to generator pairs (G,H)
and (G′, H) respectively if they satisfy

c = H(S, s1G+ s2H + cX, s1G
′ + s2H + cX).

where S = (G‖G′‖H‖X‖Y). We will denote such a triple by

PoK{(α, β)︸ ︷︷ ︸
wit

| X = αG+ βH ∧ Y = αG′ + βH︸ ︷︷ ︸
stmt

}.

Definition 3.3 A 5-tuple of scalars (c1, c2, s1, s2, s3) ∈ Z5
q is a NIZK proof of either

3.5 Revelio - A MimbleWimble Proof of Reserves Protocol 36

(i) the knowledge and equality of the representations of X, Y ∈ G with respect to
generator pairs (G,H) and (G′, H) respectively OR

(ii) knowledge of the discrete logarithm of the element Y ∈ G with respect to gen-
erator G′,

if they satisfy
c1 + c2 = H(S, V1, V2, V3).

where S = (G‖G′‖H‖X‖Y) and

V1 = s1G+ s2H + c1X,

V2 = s1G
′ + s2H + c1X,

V3 = s3G
′ + c2Y

We will denote such a triple by

PoK{(α, β, γ)︸ ︷︷ ︸
wit

| (X = αG+ βH ∧ Y = αG′ + βH) ∨ (Y = γG′)︸ ︷︷ ︸
OR stmt

}.

3.5.2 Main Idea of Revelio

To generate a Revelio proof, an exchange chooses an anonymity set Canon =
(C1, C2, . . . , Cn) from the Grin blockchain. Let the set of outputs owned by the
exchange be Cown ⊂ Canon. For Ci ∈ Cown, the exchange knows the blinding factor
ki ∈ Zq such that Ci = kiG+ aiH. For each Ci ∈ Canon, the exchange also publishes
a tag Ii defined as

Ii =


kiG

′ + viH if Ci ∈ Cown

yiG
′ if Ci /∈ Cown

(3.11)

where yi = H(kexch, Ci) and kexch is a long-term secret key of the exchange. The
reason for such a definition of yi is that it needs to be a determinitic function of
the chosen cover output Ci. This is because we need to have consistent tag for a
particular cover output Ci appearing in Canon over multiple Revelio proofs. If a
randomly generated yi was used in different Revelio proofs of the same exchange,
the tags corresponding to exchange-owned outputs would remain the same while the
tags of cover outputs would change. In such a case, it would be trivial to point out
the outputs owned by the exchange. Therefore, we need tags to be a determinitic
function of the outputs in the anonymity set. Additionally, the exchange publishes
NIZK PoK σi = (ci1, ci2, si1, si2, si3) of the form

PoK{(α, β, γ) | (Ci = αG+ βH ∧ Ii = αG′ + βH) ∨ (Ii = γG′)}.

3.5 Revelio - A MimbleWimble Proof of Reserves Protocol 37

Lastly, the exchange claims that the commitment Cassets = ∑
i∈[n] Ii is a Pedersen

commitment to the total assets owned by the exchange. Note that the tag list
(I1, I2, . . . , In) is used to check collusion among exchanges. A Revelio proof verifica-
tion involves checking of any matches in tags of different exchanges and verification
of the NIZK PoKs σi ∀i ∈ [n].

3.5.3 Drawbacks of Revelio

The size of a Revelio proof is 5n elements in Zq and n + 1 elements in G.
Privacy provided by Revelio for exchange-owned outputs directly depends on the
number of cover outputs used. Larger is the size of the anonymity set, greater is
the privacy of the exchange-owned outputs. An exchange would ideally like to have
the entire UTXO set as the anonymity set. Since the proof sizes in Revelio increase
linearly with the size of Canon, setting Canon to be equal to the whole UTXO set is
not a scalable strategy.

The collusion-resistance property of Revelio works only if all the exchanges
generate their proofs using the same blockchain state. Enabling simultaneous proof
generation is necessary to avoid cheating by exchanges. By simultaneous proof gen-
eration, we mean that the exchanges must have the same anonymity sets (ideally, the
whole of UTXO set at a give point in time) and different exchanges could generate
proofs in synchronisation with the blockchain state. Both of the above drawbacks
led us to the development of RevelioBP which alleviates the above drawbacks with
a higher computational cost. We describe RevelioBP in the next chapter.

Chapter 4

RevelioBP - MimbleWimble Proof
of Reserves Protocol with Short
Proofs

4.1 Introduction
MimbleWimble is a design for a scalable cryptocurrency which was proposed
in 2016 [33]. Beam and Grin are two implementations of the MimbleWimble
protocol which are available on several exchanges [21]. Revelio [1] was the first
proof of reserves protocol for MimbleWimble coins which provided some privacy
to exchanges by hiding the exchange-owned outputs inside an anonymity set of
outputs. As the anonymity set is revealed as part of the proof of reserves, a larger
anonymity set results in better privacy for the exchange. Since the Revelio proof
size scales linearly with the anonymity set, it becomes an impediment in scaling
the anonymity set to the set of all unspent transaction outputs (UTXOs). To solve
the scalability issue of Revelio, we designed RevelioBP leveraging the Bulletproofs
[2] framework, resulting in the proof size being logarithmic in the anonymity set size.

4.2 Our Contribution
In this chapter, we present RevelioBP, a proof of reserves protocol for MimbleWimble
with proof sizes scaling logarithmcally in the size of the anonymity set and linearly
in the size of the exchange-owned output set. This makes it feasible to choose the
anonymity set to be the set of all UTXOs on the blockchain. To make quantitative
comparisons, we have implemented RevelioBP in Rust. At the time of writing this

38

4.3 Outputs in MimbleWimble 39

paper, the number of UTXOs on the Grin blockchain is approximately 161,000 [34].
A Revelio proof of reserves for this anonymity set will have size 32 MB as against
0.27 MB using RevelioBP instead.∗ This reduction in proof size, however, comes at
the cost of larger proof generation and verification times. If an exchange is willing to
compromise on the size of the proof and is required to give frequent proofs of reserves,
Revelio serves as a better choice. If proof sizes are critical for an exchange and it
is willing to spend more time generating the proof, RevelioBP clearly outperforms
Revelio. In conclusion, we quantitatively highlight the trade-off between proof size
and performance in using Revelio and RevelioBP, both of which are based on the
discrete log assumption.

4.3 Outputs in MimbleWimble
In MimbleWimble, coins are stored in outputs which consist of Pedersen commit-
ments of the form C = grha ∈ G where g, h ∈ G and r, a ∈ Zq. Here a represents the
amount of coins stored in the output and r is a blinding factor. Each commitment
is accompanied by a range proof which proves that the amount a lies in the range
{0, 1, 2, . . . , 264 − 1}.

The group elements g and h are assumed to have an unknown discrete logarithm
relationship. For example, in Grin G is the secp256k1 elliptic curve group, g is
the base point of the secp256k1 curve, and h is obtained by hashing g with the
SHA256 hash function [36]. The unknown discrete logarithm relationship makes the
commitment computationally binding, i.e. a polynomial-time adversary cannot find
r′ 6= r and a′ 6= a such that C = grha = gr

′
ha
′ .

To spend an output having the commitment C = grha, knowledge of the blind-
ing factor r is required [31]. As spending ability is equivalent to ownership, a proof
of reserves protocol for MimbleWimble involves a proof of knowledge of blinding
factors of several outputs.

4.4 From Omniring to RevelioBP
In Monero, source addresses in a transaction are obfuscated using ring signatures
and the amounts are hidden in Pedersen commitments [37]. The current transaction
structure in Monero, called ring confidential transaction (RingCT), has proof sizes

∗Under the assumption that the exchange owns 5% of all UTXOs.
Some sections of this chapter originally appeared in [35].

4.5 RevelioBP Proof of Reserves Protocol 40

which scale linearly in the ring size. Omniring [28] is a recent proposal for RingCTs
with proof sizes which scale logarithmically in the ring size. It relies on Bulletproofs
[2] to achieve this size reduction. Given a ring R = (R1, R2, . . . , Rn) of public keys
where Ri = hxi for h ∈ G, xi ∈ Zq, the Omniring construction enables a prover to
prove knowledge of the private keys xi1 , xi2 , . . . , xim corresponding to a subset RS

of R without revealing RS. For each public key Rj in this subset RS, the prover
also outputs a tag given by tagj = gx

−1
j for g ∈ G. This tag is used to detect double

spending from a source address.
The design of RevelioBP is inspired by the Omniring construction. Given the

set of UTXOs Cutxo = (C1, C2, . . . , Cn) on the blockchain where Ci = grihai for
some ri, ai ∈ Zq, the prover in RevelioBP proves knowledge of blinding factors ri
and amounts ai for all Ci in a subset Cown of Cutxo without revealing Cown. For
each output Cj ∈ Cown, the prover outputs a tag tagj = g

rj

t h
aj where gt ∈ G is a

randomly chosen group element. In RevelioBP, the tag has a dual role. Firstly, it is
used to detect output sharing between exchanges. Secondly, the product of the tags
is a Pedersen commitment to the total reserves of the exchange.

4.5 RevelioBP Proof of Reserves Protocol
To spend a MimbleWimble output having the commitment C = grha, knowledge of
the blinding factor r is required [31]. Technically, the ability to spend an output
also requires knowledge of the amount a. But the amount can be at most 264 − 1,
and hence can be found by brute force search given C and r.

Let Ct
utxo be the set of UTXOs on a MimbleWimble blockchain after the block

with height t has been mined. An exchange will own a subset Ct
own ⊂ Ct

utxo, where
ownership implies knowledge of the blinding factor for each output C ∈ Ct

own. Using
the RevelioBP protocol, the exchange can construct a Pedersen commitment Cres to
an amount which is equal to the sum of the amounts commited to by each of the
outputs in Ct

own. Given a Pedersen commitment Cliab to the total liabilities of the
exchange, it can give a proof of solvency via a range proof which shows that the
amount committed to in CresC

−1
liab is non-negative. If there is no suitable method to

construct Cliab, then the exchange can reveal a base amount abase and prove that
Cresh

−abase is a commitment to a non-negative amount.
While RevelioBP does not reveal Ct

own, it does reveal its cardinality st = |Ct
own|.

We give a reasonable workaround for this issue in Section 4.5.1.

4.5 RevelioBP Proof of Reserves Protocol 41

If the Decisional Diffie-Hellman (DDH) assumption holds in the group G, the
RevelioBP proof of reserves protocol satisfies the following properties:

• Inflation resistance: Using RevelioBP, a probabilistic polynomial time (PPT)
exchange will not be able to generate a commitment to an amount which exceeds
the reserves it actually owns.

• Collusion detection: Situations where two exchanges share an output while gen-
erating their respective RevelioBP proofs will be detected.

• Output privacy: A PPT adversary who observes RevelioBP proofs from an ex-
change cannot do any better than random guessing while identifying members of
Ct
own.

The security proofs are given in Section 4.7.

4.5.1 Proof Generation

The RevelioBP protocol requires one randomly chosen group element gt ∈ G
per block such that the discrete log relation between gt and g, h is unknown. All the
exchanges need to agree upon the procedure used to generate the sequence of gts.
For example, gt could be generated by hashing the contents of the block at height
t. An exchange giving a RevelioBP proof of its reserves at the block with height t
performs the following procedure:

1. From the UTXO set Ct
utxo at block t, the exchange constructs the vector C =

(C1, C2, . . . , Cn) where the Cis are all the UTXOs arranged in the order of their
appearance on the blockchain. So n = |Ct

utxo|. To keep the notation simple,
we do not make the dependence of C and n on t explicit.

2. The exchange owns a subset Ct
own = {Ci1 , Ci2 , . . . , Cis} of Ct

utxo where 1 ≤ i1 <

· · · < is ≤ n. For each Cij ∈ Ct
own, the exchange knows rj and aj such that

Cij = grjhaj . Using this information, the exchange constructs the tag vector
I = (I1, I2, . . . , Is) where Ij = g

rj

t h
aj . Note that Ij is a Pedersen commitment

to the amount aj with blinding factor rj using bases gt, h. So the only difference
between Cij and Ij is that the base g in the former is replaced with gt in the
latter.

3. Let a = (a1, a2, . . . , as) and r = (r1, r2, . . . , rs) be the amount and blinding
factor vectors corresponding to the exchange-owned outputs. Let eij ∈ {0, 1}n

4.5 RevelioBP Proof of Reserves Protocol 42

be the unit vector with a 1 in position ij and 0s everywhere else. Let E ∈
{0, 1}s×n be the matrix with ei1 , ei2 , . . . , eis as rows.

The exchange publishes (t, I) and generates a zero-knowledge argument of
knowledge ΠRevBP of quantities (E, a, r) such that for all j = 1, 2, . . . , s

Ceij = grjhaj , Ij = g
rj

t h
aj . (4.1)

4. The exchange publishes its RevelioBP proof as (t, I,ΠRevBP) and claims that
Cres = ∏s

j=1 Ij is a Pedersen commitment to its reserves ∑s
j=1 aj.

Note that the tag Ij is a deterministic function of the output Cij at a given block
height t. So if two exchanges try to use the same output in their respective RevelioBP
proofs, the same tag Ij will appear in both their proofs, revealing the collusion.

The reason for changing the base gt with the block height is to change the tag
of the same output across RevelioBP proofs at different block heights. If gt were
unchanged (as in Revelio [1]), then the appearance of the same tag in two RevelioBP
proofs at different block heights will reveal that some exchange-owned output has
remained unspent between these two block heights.

As Cres is a Pedersen commitment with respect to bases gt and h, the Pedersen
commitment Cliab to the exchange’s liabilities should also be generated using these
bases. Otherwise, it will be not be possible to generate a range proof on CresC

−1
liab.

The proof reveals the cardinality s of Ct
own. An exchange which wants to hide

the number of outputs it owns can create some outputs which commit to the zero
amount and use these to pad the outputs with non-zero amounts. For example,
suppose that the number of outputs owned by the exchange is expected to be in the
range 600 to 1000. It can create 400 outputs which commit to the zero amount and
use these to always pad the number s revealed in the proof to be always 1000. Of
course, the exchange would need to spend a nominal amount as transaction fees in
creation of such outputs.

Finally, note that an exchange can under-report its reserves by excluding an
output it owns from the subset Ct

own used to generate the RevelioBP proof. An
exchange may choose to do this if its liabilities are much lower than its reserves.

4.5.2 Proof Verification

Given a RevelioBP proof of reserves (t, I,ΠRevBP) from an exchange referring to
the block height t, the verifier performs the following procedure:

4.6 ZK Argument of Knowledge ΠRevBP 43

1. First, it reads the set of all UTXOs at block height t and forms the vector
C = (C1, . . . , Cn) such that Cis are listed in the order of their appearance on
the blockchain.

2. It verifies the argument of knowledge ΠRevBP by checking that the verification
equations described in Figure 4.6 hold.

3. Finally, the verifier checks if any of the tags in the I vector appear in another
exchange’s RevelioBP proof for the same block height t. If the same tag Ij
appears in the RevelioBP proofs of two different exchanges, then collusion is
declared and the proofs is considered invalid.

4.6 ZK Argument of Knowledge ΠRevBP

Let C = (C1, . . . , Cn) be the vector representation of the UTXO set Ct
utxo at block

height t. Let I = (I1, . . . , Is) be the tag vector published by the exchange as part of
the RevelioBP proof. The exchange constructs an argument of knowledge ΠRevBP to
convince a verifier of the following:

(i) It knows rj and aj such that Ij = g
rj

t h
aj ∀j ∈ [s].

(ii) ∃ij ∈ [n] (index) such that Cij = grjhaj ∀j ∈ [s].

Note that while the existence of the indices ij will be proved by ΠRevBP, the indices
themselves are not revealed. Since the term haj is common in both equations in the
above statements, combining the two equations, we can equivalently state that the
exchange knows rj and ij such the following holds for all j ∈ [s]

Ijg
−rj

t = Cijg
−rj . (4.2)

In other words, knowledge of rj and ij for all j ∈ [s] suffices for an honest exchange
to construct ΠRevBP.

Consider the language LRevBP given in (4.3) where r = (r1, r2, . . . , rs) ∈ Zsq and
eij ∈ {0, 1}n is a unit vector with a 1 at index ij and zeros everywhere else. The
language depends on the common reference string crs = {G, q, g, h, gt}.

LRevBP =
(C, I)

∣∣∣∣∣∣ ∃(r, ei1 , . . . , eis) such that
Ijg
−rj

t = Ceij g−rj ∀j ∈ [s]

 (4.3)

To leverage the Bulletproofs framework for the construction of a log-sized ar-
gument of knowledge for the language LRevBP, we need to do the following:

4.6 ZK Argument of Knowledge ΠRevBP 44

(i) Embed the secrets (r, ei1 , . . . , eis) as the exponents in a Pedersen vector com-
mitment satisfying some inner product relation.

(ii) Using the public information (C, I), construct the base vectors of the Pedersen
vector commitment in such a way that the prover would not know the discrete
logarithm relation between elements of the base vectors.

The first requirement seems natural since the Bulletproofs technique helps us
prove the knowledge of exponents in a Pedersen vector commitment satisfying some
inner product relations. The second one is a more technical requirement. In Bul-
letproofs, the elements in the base vectors g,h ∈ Gn are uniformly chosen from the
group G to ensure that a discrete logarithm relation between them is not known to
a PPT prover. The soundness of the Bulletproofs protocol relies on this assumption.
Lai et al [28] noted that if base vector components are chosen from a blockchain
a prover might know the discrete logarithm relation between them. To solve this
problem, they proposed using a base vector which is the Hadamard product of the
vectors taken from the blockchain (with a random exponent) and a randomly chosen
base vector.

To construct a base vector satisfying the above requirements, we write the
statement of LRevBP from (4.3) as

g−rjg
rj

t Ceij I−1
j = 1 ∀j ∈ [s]. (4.4)

For u $← Zq, combining the above constraints, we have

∏
j∈[s]

(
g−rjg

rj

t Ceij I−1
j

)uj−1

= 1,

=⇒ g−〈u
s,r〉g

〈us,r〉
t CusEI−us = 1, (4.5)

where E is a s × n matrix having the eij vectors as rows. We write the exponents
in (4.5) as compressed secrets, namely ξ = −〈us, r〉, ξ′ = 〈us, r〉, ê = usE and let
Î = I−us . Given a vector p ∈ Gn+3 and a scalar w ∈ Zq, we construct the base and
exponent vectors as follows

g′w :=
(
(g‖gt‖C‖Î)◦w ◦ p

)
, (4.6)

a′ := (ξ‖ξ′‖ê‖1). (4.7)

Note that the compressed secrets are a linear combination of the actual secrets. We
need to append the actual secrets (r, ei1 , . . . , eis) for completeness to (4.7). Thus,

4.6 ZK Argument of Knowledge ΠRevBP 45

we have

gw :=
[(

(g‖gt‖C‖Î)◦w ◦ p
)
‖g′
]
, (4.8)

a :=
[
(ξ‖ξ′‖ê‖1)‖(ei1‖ . . . ‖eis‖r)

]
. (4.9)

where g′ $← Gsn+s. We now state a lemma in regards to the non-trivial discrete-log
relation between the components of the base vector gw.

Lemma 4.1 If the components of p are chosen uniformly from G and independent
of (C, I), then a PPT adversary cannot find a non-trival discrete logarithm relation
between components of gw.

Proof : As the components of p and g′ are uniformly chosen from G, the components
of gw are iid with a uniform distribution in G. Hence a PPT adversary cannot find
a non-trivial discrete logarithm relation between these components. �

We can now construct a Pedersen vector commitment as A = (h′)rga
whb for

appropriately chosen b ∈ ZNq ,h $← GN where N = |a|, satisfying the first require-
ment in using the Bulletproofs framework. Owing to (4.5), (4.8), (4.9), we have
ga
w = ga

w′ for any w,w′ ∈ Zq. Thus, the above vector commitment to a remains
the same for any w ∈ Zq. By successfully running the Bulletproofs protocol twice
on A with respect to two different bases (h′‖gw‖h) and (h′‖gw′‖h) we can extract
the secret vector a such that A = (h′)rga

whb = (h′)rga
w′hb. This solves the problem

of extractability (soundness) of the protocol. In summary, we are now ready to
construct a Bulletproofs-based argument of knowledge proving that the exchange
owns some outputs from the entire set of UTXOs. The next step is to develop an
inner product relation between the secret vectors a and b to enable us in designing
a Bulletproofs-like protocol.

4.6.1 Building Inner Product Relation

We have computed the secret vector a and the base vector gw given by equations
(4.6), (4.7) overcoming the difficulties in using a Bulletproofs-like framework. We
rename secret vectors a,b as cL, cR ∈ ZNq respectively and define them in Figure
4.2. Note that cR is defined based on cL. We now wish to construct an inner
product relationship between cL and cR. We use vector indexing starting from 1,
i.e. cL[k1 : k2] = (cL[k1], cL[k1 + 1], . . . , cL[k2 − 1]) where k1, k2 ∈ N, k1 < k2.

(i) eL = cL[n+4 : n+4+sn] = vec(E) ∈ {0, 1}sn and eR = cR[n+4 : n+4+sn] =
1sn− vec(E) ∈ {0, 1}sn, i.e. those slices are element-wise binary complements.

4.6 ZK Argument of Knowledge ΠRevBP 46

Therefore, for a scalar vector ysn ∈ Zsnq , we should have eL ◦ (eR ◦ ysn) = 0sn,
leading to inner-product constraint (4.10).

(ii) Next, compressed secrets ξ, ξ′ are related such that ξ+ξ′ = 0 and ξ = −〈us, r〉.
This means that for a scalar v ∈ Zq, we must have

vξ + ξ′ = (v − 1)ξ = −(v − 1)〈us, r〉,

=⇒ ξ + ξ′ + 〈(v − 1)us, r〉 = 0.

This leads us to the constraint (4.11).

(iii) We have the compressed secret vector for indices as

ê = usE = (0, 0, 1︸︷︷︸
i1

, . . . , u︸︷︷︸
i2

, . . . , u2︸︷︷︸
i3

, . . . , us−1︸ ︷︷ ︸
is

, . . . , 0, 0) ∈ Znq .

To prove that ê actually is of this form, we multiply it with a scalar vector yn.

yn ◦ ê = (0, 0, yi1 · 1︸ ︷︷ ︸
i1

, . . . , yi2 · u︸ ︷︷ ︸
i2

, . . . , yi3 · u2︸ ︷︷ ︸
i3

, . . . , yis · us−1︸ ︷︷ ︸
is

, . . . , 0, 0) ∈ Znq .

Now we get this same structure if we do the following: eL ◦ (us ⊗ yn) leading
us to constraint (4.12).

(iv) We know that if we add up all the elements of eL ◦ (ys ⊗ 1n), we will get the
sum as ∑s

j=1 y
j−1. To prove that cL[n + 3] = 1, if we multiply cL[n + 3] with

ys and add it to the sum computed above, we must get 〈1s+1,ys+1〉, leading
us to constraint (4.13).

(v) Lastly, to ensure that elements of eL and eR are actually {0, 1}, checking if
〈eL + eR − 1sn,ysn〉 = 0 should suffice. This forms the last constraint (4.14).

Now, we have all the required relations between the secret vectors in Figure 4.5 to
ensure that an honest prover’s witness encoding is correct. We now combine all these
constraints in a single inner product relation by multiplying each and constraint by
a power of a scalar and adding them up.

〈cL, cR ◦ v0〉+ z · 〈cL,v1〉+ z2 · 〈cL,v2〉+

z3 · 〈cL,v3〉+ z4 · 〈cL + cR − 1t,v4〉 = z3 · 〈1s+1,ys+1〉,

=⇒ 〈cL, cR ◦ v0〉+ 〈cL,
4∑
i=1

zi · vi〉+ 〈cR, z4 · v4〉 = z3 · 〈1s+1,ys+1〉+ 〈1t, z4 · v4〉

4.6 ZK Argument of Knowledge ΠRevBP 47

Substituting the compressed constraint vectors θ,µ,ν as defined in Figure 4.4,

=⇒ 〈cL, cR ◦ θ〉+ 〈cL,µ〉+ 〈cR,ν〉 = z3 · 〈1s+1,ys+1〉+ 〈1t,ν〉,

Combining the first and third terms on the lhs using constraint vector θ◦−1,

=⇒ 〈cL, cR ◦ θ〉+ 〈cL,µ〉+ 〈cR ◦ θ,ν ◦ θ◦−1〉 = z3 · 〈1s+1,ys+1〉+ 〈1t,ν〉,

=⇒ 〈cL + ν ◦ θ◦−1, cR ◦ θ〉+ 〈cL,µ〉 = z3 · 〈1s+1,ys+1〉+ 〈1t,ν〉,

Substituting compressed constraint vector α and scalar δ, we get

=⇒ 〈cL +α, cR ◦ θ〉+ 〈cL,µ〉 = δ,

=⇒ 〈cL +α, cR ◦ θ〉+ µ = δ + 〈µ,α〉

The final equation is the required single inner product relation. We can now proceed
in constructing a Bulletproofs-like protocol for this inner product relation.

The interactive protocol ΠRevBP = (Setup, 〈P,V〉) for the language LRevBP is
shown in Figure 4.6. Note that Setup, prover P and verifier V are PPT algorithms.
The notation used in the protocol is given in Fig. 4.1, 4.2, 4.3, 4.4, 4.5.

Notation Description

Î = Î(u) := I−us Compressed key-images I1, I2, . . . , Is

E ∈ Zs×n2 Secret indices matrix, vec(E) = (ei1 , . . . , eis)

ê = usE

Compressed secrets (ê, ξ, ξ′) satisfying gξgξ
′

t CêÎ = 1ξ := −〈us, r〉

ξ′ := 〈us, r〉

cL, cR Honest encoding of witness (Fig. 4.2)

N = sn+ n+ s+ 3 Size of the vectors cL, cR

(v0, . . . ,v4)(u, v, y) Constraint vectors (Fig. 4.3, 4.4)

α,β, δ,µ,ν,θ(u, v, y, z) Compressed constraint vectors (Fig. 4.3, 4.4, 4.5)

EQ(γL,γR) Relationship between valid witnesses (Fig. 4.5)

Figure 4.1: Notation used in the argument of knowledge ΠRevBP

4.6 ZK Argument of Knowledge ΠRevBP 48

cL := (ξ ‖ ξ′ ‖ ê ‖ 1 ‖ vec(E) ‖ r)

cR := (0n+3 ‖ 1sn − vec(E) ‖ 0s)

Figure 4.2: Honest encoding of witness vectors



v0

v1

v2

v3

v4


:=



· · · · ysn ·
v 1 · · · (v − 1)us

· · −yn · us ⊗ yn ·
· · · ys ys ⊗ 1n ·
· · · · ysn ·



Figure 4.3: Definitions of constraint vectors where dots mean zero scalars or vectors

θ := v0, µ :=
4∑
i=1

zivi, ν := z4v4,

θ◦−1[j] =


(θ[j])−1 if θ[j] 6= 0,

0 otherwise,

α := θ◦−1 ◦ ν, β := θ◦−1 ◦ µ,

δ := z3 · 〈1s+1,ys+1〉+ 〈α,µ〉+ 〈1N ,ν〉.

Figure 4.4: Definitions of compressed
constraint vectors

EQ(γL,γR) = 0 ⇐⇒

〈γL,γR ◦ v0〉 = 0, (4.10)

〈γL,v1〉 = 0, (4.11)

〈γL,v2〉 = 0, (4.12)

〈γL,v3〉 = 〈1s+1,ys+1〉, (4.13)

〈γL + γR − 1t,v4〉 = 0. (4.14)

Figure 4.5: A system of equations guar-
anteeing the integrity of the encoding of
the witnesses

4.6 ZK Argument of Knowledge ΠRevBP 49

Figure 4.6: Argument of knowledge for LRevBP

Setup(λ,L):

L(G, q, g, h, gt) as defined in (4.3),

Generate following elements randomly from G

h′ $← G,p $← Gn+3,g′ $← Gsn+s,h $← GN

Output: crs = (G, q, g, h, gt, h′,p,g′,h)

〈P(crs, stmt, wit),V(crs, stmt)〉 :

P:

(i) rA $← Zq

(ii) g0 = (p ‖ g′)

(iii) A := (h′)rAgcL
0 hcR

P −→ V: A

V: u, v, w $← Zq, V −→ P: u, v, w

P, V:

(i) Î := I−us

(ii) gw :=
[(

(g‖gt‖C‖Î)◦w ◦ p
)
‖g′
]

P:

(i) rS $← Zq, sL $← ZNq , sR ∈ ZNq s.t. ∀j ∈ [N]

sR[j] =


sj $← Zq if n+ 4 ≤ j ≤ N − s,

0 otherwise

(ii) S = (h′)rSgsL
w hsR

P −→ V: S

V: y, z $← Zq, V −→ P: y, z

P:

4.6 ZK Argument of Knowledge ΠRevBP 50

(i) Define the following polynomials in ZNq [X]

l(X) := cL +α+ sL ·X

r(X) := θ ◦ (cR + sR ·X) + µ

t(X) := 〈l(X), r(X)〉 = t2X
2 + t1X + t0

for t2, t1, t0 ∈ Zq. Also, t0 = δ.

(ii) τ1, τ2 $← Zq

(iii) T1 = gt1hτ1 , T2 = gt2hτ2

P −→ V: T1, T2

V: x $← Zq , V −→ P: x

P:

(i) l := l(x) = cL +α+ sL · x ∈ ZNq

(ii) r := r(x) = θ ◦ (cR + sR · x) + µ ∈ ZNq

(iii) t̂ := 〈l, r〉 ∈ Zq

(iv) τx := τ2x
2 + τ1x

(v) r := rA + rSx

P −→ V: l, r, t̂, τx, r

V:

(i) t̂ ?= 〈l, r〉 // t̂ was computed correctly

(ii) gt̂hτx
?= gδT x1 T

x2
2 // t̂ satisfies t0 + t1x + t2x2

(iii) (h′)rgl
whθ

◦−1◦r ?= ASxgαwhβ // Check if l = l(x) and r = r(x)

As the prover has to send vectors l, r ∈ ZNq in the last round, the ΠRevBP proto-
col results in a communication cost of O(N) for the prover, where N is the length of
the secret vectors. We reduce this to O(log2(N)) using the inner-product argument
in [2]. Concretely, the language for the inner-product argument is expressed as

LIP =
P ∈ G, c ∈ Zq

∣∣∣∣∣∣ ∃(a,b) such that
P = ucgahb ∧ c = 〈a,b〉

 (4.15)

4.6 ZK Argument of Knowledge ΠRevBP 51

where a,b ∈ Z|a|q , g,h $← G|a|, u $← G. Thus, in our case, we construct a Pedersen
vector commitment to (l, r)

P = ut̂gl
w(h′)r = ut̂(h′)−rASxgαwhβ,

where h′ = hθ
◦−1 . Note that P , as shown above, could be computed by verifier.

Thus, running the inner-product argument with input (P, t̂) proves the knowledge
of (l, r) in O(log2N) communication. Furthermore, since the ΠRevBP protocol is
public-coin, we can make it non-interactive using the Fiat-Shamir heuristic [38].

Theorem 4.1 The argument presented in Figure 4.6 is public-coin, constant-round,
perfectly complete and perfect special honest-verifier zero-knowledge.

Proof sketch: The ΠRevBP protocol is public-coin since all of the challenges from V are
generated uniformly randomly from Zq. Given a crs = (G, q, g, h, gt) and an honest
prover with knowledge of witness wit = (r, ei1 , . . . , eis) for a stmt = (C, I) ∈ LRevBP,
it is easy to see that the three verification conditions at the end of Figure 4.6
hold. Thus, the protocol is perfectly complete. Next, we need show that ΠRevBP is
perfect special honest-verifier zero-knowledge (SHVZK) by constructing an efficient
simulator S, which can simulate the transcript of ΠRevBP without knowing the
witness. Note the difference between a Special HVZK and HVZK is that in the
former, the simulator S is given the challenges chosen by the verifier while in the
latter, simulator S is allowed to choose the challenges by itself. Perfect SHVZK
implies that no adversary, even if it is computationally unbounded, would be able to
distinguish between the simulated and the honestly generated transcripts for valid
statements and witnesses. For the protocol to be perfect SHVZK, the simulated
transcript needs to be identically distributed to the transcript of ΠRevBP. Detailed
construction of S is shown in Appendix A.2.

Theorem 4.2 Assuming the discrete logarithm assumption holds over G, ΠRevBP

has computational witness-extended-emulation for extracting a valid witness wit.

Proof sketch: Proving that ΠRevBP has computational witness-extended emulation
implies showing that it is computationally sound. To do so, we need to construct
a PPT extractor E , which when given enough number of transcripts of ΠRevBP via
rewinding, succeeds in construction of a valid witness as defined in the language
LRevBP. We show the detailed construction of E in Appendix A.3.

4.7 Security Properties of RevelioBP 52

4.7 Security Properties of RevelioBP
In this section, we discuss the security properties of the ΠRevBP protocol, namely
inflation resistance, collusion detection, and output privacy (as defined in Section
4.5). We defer the rigorous treatment of the security properties to an extended
version of this paper.

4.7.1 Inflation Resistance

Theorem 4.2 proves that a PPT exchange can include the tag Ij = g
rj

t h
aj in

the vector I only if it knows the blinding factor rj and amount aj corresponding
to the output Cij = grjhaj . Thus an exchange can only create tags corresponding
to outputs it owns. Furthermore, since each tag Ij is forced to be a Pedersen
commitment to the same amount as the output Cij , the exchange cannot inflate the
amount being contributed by Ij to Cres. Thus Cres is a Pedersen commitment to the
actual reserves ∑s

j=1 aj.

4.7.2 Collusion Resistance

Suppose two exchanges generate RevelioBP proofs at the same block height
t. Ideally, each Ci ∈ Cutxo can contribute to the reserves of at most one of the
exchanges. If exchange 1 who owns an output Ci = grihai reveals ri and ai to
exchange 2, both of them can try using Ci as a contributing output in their proofs
of reserves. Then while creating their respective arguments ΠRevBP both exchanges
will be forced to include the tag Ij = gri

t h
ai in their tag vectors, revealing the

collusion. This technique will work only if all exchanges agree to use the same
sequence of gts in their RevelioBP proofs. If exchanges 1 and 2 were to use different
bases gt and g′t to generate their proofs, then collusion cannot be detected. As of
now, pressure from customers and regulators seems to be the only way to ensure
that all exchanges use the same gt.

4.7.3 Output Privacy

Let λ be the security parameter such that Setup(1λ) generates the group
(G, q, g) with log2 q ≈ λ. Suppose an exchange publishes a polynomial number
of proofs of reserves at block heights t1, t2, . . . , tf(λ) where f is a polynomial. Out-
put privacy requires that a PPT distinguisher D, which is given the f(λ) proofs of
reserves as input, cannot do better than random guessing while classifying an out-
put as owned by the exchange. Note that the ΠRevBP protocol itself does not reveal

4.7 Security Properties of RevelioBP 53

anything about the secrets. Here, we intend to analyse privacy of outputs due to
the revelation of the tag vector.

The RevelioBP protocol provides output privacy under the following assump-
tions:

(i) The blinding factors of the exchange-owned outputs are chosen independently,
uniformly from Zq.

(ii) The DDH problem is hard in the group G, i.e. there is no algorithm which can
solve the DDH problem in G with a running time polynomial in λ.

If the first assumption does not hold, a PPT adversary could identify exchange-
owned outputs given a RevelioBP proof. For example, consider the case when two
exchange-owned outputs Ci and Cj have the same blinding factor r but different
amounts ai and aj, i.e. Ci = grhai and Cj = grhaj . If the exchange uses both
outputs in a RevelioBP proof at block height t, then the tags corresponding to the
outputs will be Ij = grth

ai and Ij = grth
aj . An adversary can figure out that these

two tags have the same blinding factor by checking if the equality Ijh−a1 = Ijh
−a2

holds for some (a1, a2) ∈ V 2 where V is the range of possible amounts. As the size
of the set V is usually small, such a search is feasible. Once the amounts ai and
aj have been found, the adversary could iterate through all possible output pairs
(C,C ′) in Ct

utxo × Ct
utxo and check if Ch−ai = C ′haj . If a pair of outputs satisfying

this equality is found, then the adversary concludes that both of them belong to the
exchange. By requiring that the blinding factors are randomly chosen, such attacks
become infeasible.

To precisely define output privacy, we use an experiment called OutputPriv

which proceeds as follows:

1. For security parameter λ, the generate group parameters (G, q, g)← Setup(1λ)
where q ≈ 2λ. A sequence of generators g1, g2, . . . , gf(λ) are chosen uniformly
from G. These generators will be used to instantiate gt in each of the f(λ)
RevelioBP proofs.

2. The exchange creates two outputs C1, C2 with amounts a1, a2 and blinding
factors r1, r2 $← Zq, i.e. C1 = gr1ha1 and C2 = gr2ha2 .

3. The exchange chooses an integer b $← {1, 2}. Note that Cb = grbhab .

4. The exchange now generates f(λ) RevelioBP proofs where the UTXO vector is
C = (C1, C2) and the number of exchange-owned outputs is 1 in all of them.

4.7 Security Properties of RevelioBP 54

The lth proof reveals a single tag Il = grbl h
ab for l = 1, 2, . . . , f(λ), i.e. the

same exchange-owned output is used to generate each of the l proofs. Let the
argument of knowledge corresponding to the lth RevelioBP proof be Πl

RevBP.

5. The f(λ) RevelioBP proofs consisting of tags Ī = (I1, . . . , If(λ)), arguments
Π̄ = (Π1

RevBP, . . . ,Π
f(λ)
RevBP) along with the generators ḡ = (g1, g2, . . . , gf(λ)), out-

puts C1, C2, and amounts a1, a2 are given as input to a distinguisher D which
outputs b′ ∈ {1, 2}, i.e.

b′ = D
(
Ī , Π̄, ḡ, C1, C2, a1, a2

)
(4.16)

6. D succeeds if b′ = b. Otherwise it fails.

Definition 4.1 The RevelioBP proof of reserves protocol provides output privacy if
every PPT distinguisher D in the OutputPriv experiment succeeds with a probability
which is negligibly close to 1

2 .

To motivate the above definition, consider an adversary who observes a Reve-
lioBP proof generated by an exchange for UTXO set Ct

utxo having size n. The length
of the tag vector I reveals the number of outputs s owned by the exchange. Sup-
pose the adversary is asked to identify an exchange-owned output from Ct

utxo. If it
chooses an output uniformly from Ct

utxo, then it succeeds with probability s
n
. But

the adversary may itself own some outputs (say, na) in Ct
utxo. Then, the success

probability can be increased to s
n−na

. The above definition models the extreme case
when n − na = 2 and s = 1. The definition states that a PPT adversary can only
do negligibly better than a random guessing strategy.

The justification for revealing the amounts a1, a2 to the distinguisher D is that
the amount in a MimbleWimble output may be known to an entity other than the
output owner. For instance, a MimbleWimble transaction where Alice sends some
coins to Bob will result in a new output whose blinding factor is known only to Bob
but the amount in this output is known to Alice. The above definition captures the
requirement that even entities with knowledge of the amounts in outputs should not
be able to identify exchange-owned outputs from the RevelioBP proofs. We have the
following theorem whose proof is given in Appendix A.4.

Theorem 4.3 The RevelioBP proof of reserves protocol provides output privacy in
the random oracle model under the DDH assumption provided that the exchange
chooses the blinding factors in its outputs uniformly and independently of each other.

4.8 Performance 55

4.8 Performance
We compare the performance of our proof of reserves protocol with Revelio which
was the first MimbleWimble proof of reserves protocol [1]. In Revelio, an exchange
publishes an anonymity set Canon ⊆ Cutxo such that Cown ⊆ Canon. In RevelioBP, the
anonymity set is always equal to Cutxo. For a fair comparison, we set Canon = Cutxo

in Revelio. Let n = |Cutxo| and s = |Cown|. Revelio proof sizes are O(n) while
RevelioBP proof sizes are O(s+ log2(sn)). The exact proof sizes are:

#Elements in G #Elements in Zq
Revelio n+ 1 5n
RevelioBP s+ 2dlog2Ne+ 4 5

Table 4.1: Proof sizes of Revelio and RevelioBP protocols

where N = sn + n + s + 3. The logarithmic dependence of the RevelioBP proof
size on the UTXO set size n is the main advantage of RevelioBP over Revelio. This
is illustrated in Figure 4.7a where we compare the proof sizes of the Revelio and
RevelioBP protocols as a function of n for s = 20. For a UTXO set size of 2× 105,
the RevelioBP proof is a mere 2.5 KB compared to a 41 MB Revelio proof.

We have implemented RevelioBP in Rust over the secp256k1 elliptic curve. The
Revelio running times were estimated using the simulation code made available by
Dutta et al [39]. All the experiments were run on an Intel Core i7 2.6 GHz CPU. Our
simulation code is open-sourced on GitHub [40]. Figure 4.7c shows the RevelioBP
and Revelio proof generation and verification times as a function of the UTXO set
size for s = 20. For a constant own set size s = 10, we observe the following:

(i) A linear growth in the running times of both RevelioBP and Revelio as a
function of n.

(ii) The RevelioBP proof generation is typically 2X slower than that of Revelio
proof generation.

(iii) Although both the generation and verification of RevelioBP proofs if linear
in n for a constant s, the verification is around 2.5X faster than its genera-
tion because of a single multi-exponentiation check in the verification of inner
product protocol.

(iv) The RevelioBP verification is 20% faster than the verification of a Revelio
proof.

4.8 Performance 56

(a) Proof size in KB for s = 20

26 28 210 212 214 216 218
100

101

102

103

104

105

UTXO set size (n)

RevelioBP
Revelio

(b) Proof size in KB for n = 103

23 24 25 26 27 28 29 210
100

101

102

103

104

Own set size (s)

RevelioBP
Revelio

(c) Running times in min, s = 20

26 28 210 212 214 216 218
2−7

2−5

2−3

2−1

21

23

25

27

2X

UTXO set size (n)

RevelioBP Gen
RevelioBP Ver
Revelio Gen
Revelio Ver

26 28 210 212 214 216 218
2−7

2−5

2−3

2−1

21

23

25

27

2X

UTXO set size (n)

RevelioBP Gen
RevelioBP Ver
Revelio Gen
Revelio Ver

(d) Running times in min, n = 103

23 24 25 26 27 28 29 210
2−5

2−3

2−1

21

23

25

Own set size (s)

RevelioBP Gen
RevelioBP Ver
Revelio Gen
Revelio Ver

Figure 4.7: Performance comparison of RevelioBP and Revelio for G = secp256k1

elliptic curve. All the plots are in log-log scale.

Furthermore, while the running time of Revelio is independent of s, it scales
as O(sn) for RevelioBP. Figure 4.7d shows the generation and verification times
respectively as a function of s for n = 103. Also, the proof size of RevelioBP
proofs grow linearly with s while that of Revelio remains constant. This is shown
in Figure 4.7b for a constant anonymity set size n = 103. This implies that for
a constant UTXO set n, the verification in RevelioBP is faster than Revelio only
upto a particular s. Similarly, the difference between RevelioBP and Revelio proof
generation widens as s increases. To illustrate this in practical terms, the size of
the current UTXO set in the Grin blockchain as of June 7, 2020 is 161,000 [34]. For
this UTXO set size and own output set size equal to 100, an exchange could take

4.9 Conclusion 57

upto 160 minutes to generate a RevelioBP proof while taking less than 34 minutes to
generate a Revelio proof. The customers of the exchange can verify RevelioBP and
Revelio proofs in 68 and 34 minutes respectively. For an exchange which owns 200
outputs in the current UTXO set, the RevelioBP generation and verification times
would rise to 320 minutes and 130 minutes respectively, while the timings of Revelio
remain unchanged.

4.8.1 Scalability and Performance Trade-off

The smaller proof sizes of RevelioBP would enable exchanges to store several
historical proofs for audit purposes. Further, if proofs of reserves are to be uploaded
on the blockchain for public verifiability, smaller proof size becomes crucial. The
benefits in scalability due to RevelioBP comes at the price of performance. From
the customer point of view too, larger verification times are undesirable given their
limited computational resources.

The simpler formulation of Revelio, on the other hand, allows faster generation
and verification. Therefore, if the proof size is not a concern for an exchange, using
Revelio can reduce computational cost for the exchanges as well as the customers.
Moreover, the design of Revelio allows parallelization of its proof generation as well
as verification. On the contrary, RevelioBP relies on the recursive inner product
protocol, preventing parallelization of proof generation. Also, since the base vector
used in RevelioBP depends on the tag vector published by an exchange, RevelioBP
proofs of multiple exchanges on the same blockchain state cannot be aggregated.
Lastly, if exchanges are required to generate proofs of reserves after every K blocks
are mined, the proof generation time needs to be less thanK minutes†. In such cases,
proofs with smaller running times would be preferred. We conclude by summarizing
the trade-offs in using Revelio and RevelioBP in Table 4.2.

4.9 Conclusion
To avoid proof sizes which are linear in the size of anonymity set, we have presented
Bulletproofs-based proof of reserves protocol RevelioBP with proof size scaling log-
arithmically in the size of the anonymity set. Having implemented RevelioBP, we
conclude that the smaller proof sizes it offers comes with the cost of larger proof gen-
eration and verification times. Revelio, the first proof of reserves for MimbleWimble,

†The average inter-block time is one minute in both Grin and Beam (the two most popular
MimbleWimble-based cryptocurrencies).

4.9 Conclusion 58

RevelioBP Revelio

Proof size O(log(sn) + s) O(n)

Gen/Ver times O(sn) O(n)

Scalability 3 7

Blockchain state 3 7

Output privacy 3 3

Non-collusion 3 3

Inflation resistance 3 3

Parallelizable 7 3

Hiding own set size 7 3

Table 4.2: Summary of performance comparison between Revelio and RevelioBP

does better in terms of generation and verification times. An exchange has to make
a trade-off between scalability and performance and choose which protocol suits
their needs better: RevelioBP with smaller proof size and large generation times or
Revelio with larger proof sizes and faster generation times.

Chapter 5

Confidentiality of Amounts in
Grin

MimbleWimble [41] is a scalable cryptocurrency design where coins are stored in
Pedersen commitments [42]. The blinding factor of the Pedersen commitment which
obscures the amount of coins also serves as the spending key. Like many other
cryptocurrency designs, transactions in MimbleWimble are of two types: regular
transactions and coinbase transactions. Regular transactions involve a transfer of
coins from some input commitments already present on the blockchain to new out-
put commitments. A combination of digital signatures and range proofs are used
to prove that the total coins in the input commitments equals the total coins in the
output commitments plus transaction fees, without revealing the amounts in the
commitments [31]. Coinbase transactions reward miners for adding blocks to the
blockchain. They only consist of output commitments and have no input commit-
ments. The total amount of coins in the coinbase output commitments of a block is
public, being equal to the sum of the block subsidy and the transaction fees paid by
the regular transactions in the block.

Every regular transaction output commitment can be traced back to a set of
donor coinbase output commitments with public amounts which could have possi-
bly contributed to it. The key observation is that the amount of coins in a regular
transaction output is bounded from above by the sum of the public amounts in its
donor coinbase outputs minus the total transaction fees paid on the paths from these
donor coinbase outputs to the regular transaction output. While this observation is
probably well-known in the MimbleWimble community, to the best of our knowl-
edge there has been no effort to quantitatively compute such upper bounds for

Some sections of this chapter originally appeared in [43].

59

5.1 Our Contribution 60

a MimbleWimble-based cryptocurrency. In this paper, we compute these upper
bounds for the Grin implementation [7] of MimbleWimble. Our method can be ap-
plied to the other implementations like Beam [8]. We chose Grin because we were
able to obtain its blockchain data from the administrator of the GrinExplorer site
[44]. Note that, unlike other cryptocurrencies, it is not possible for a new node in
Grin to download all the historical blocks starting with the genesis block [45]. This
is a deliberate design choice as the MimbleWimble protocol does not require all the
blocks to check the validity of the current blockchain state. The network load on
existing nodes in the Grin P2P network is reduced by not requiring them to send
historical blocks to new nodes.∗

The first Grin block was mined on January 15, 2019. We used a snapshot
of the blockchain from March 17, 2020 in our analysis which had 612,102 blocks.
Grin has a block subsidy of 60 grins per block and a target inter-block time of one
minute. Coinbase outputs cannot be spent until they receive 1440 confirmations
which corresponds to 24 hours worth of blocks [46]. For a regular transaction output
(RTO) in a block at height h (with genesis block having height 0), a trivial upper
bound on the amount of coins in the output is 60 × max(0, h − 1439) grins. This
corresponds to the cumulative block subsidy in the blocks from height 0 to height
max(0, h − 1440). We define the flow upper bound for an RTO to be the sum of
the amounts in its donor coinbase outputs minus the total transaction fees paid in
the paths from these donor coinbase outputs to the RTO (see Section 5.3 for an
illustration). The effectiveness of the flow upper bound can be quantified using the
flow ratio of an RTO which is defined as

Flow ratio of RTO = Flow upper bound of RTO
Trivial upper bound of RTO .

A value of flow ratio close to 1 implies that the flow upper bound does not reveal
much information about the amount in the RTO. But a flow ratio value close to
0 implies that the flow upper bound is effective in constraining the amount in the
RTO to a narrow range in the relative sense.

5.1 Our Contribution
Our main contribution is an empirical analysis of the confidentiality of amounts
in the Grin blockchain which takes the transaction graph into account. To enable

∗Beam does allow the download of all historical blocks from its P2P network, in addition to
allowing the download of a compressed blockchain state like Grin.

5.2 Related Work 61

efficient computation of the flow upper bound, we define a graph with vertex set
equal to the union of the set of coinbase outputs and the set of blocks. Note that
regular transaction inputs or outputs are not represented as vertices in this graph.
The graph edges are defined to reflect all possible flows of coins between transaction
inputs and outputs. Using this graph, we calculate the flow ratio as a function of
the block height for the Grin blockchain (see Figure 5.3). For the blocks in our
snapshot, we find that the flow ratio is less than 0.5 for RTOs in 6.6% of the blocks
and more than 0.9 for 88% of the blocks. As these statistics may be biased by early
blocks mined during periods of low transaction activity, we consider the distribution
of flow ratio for only unspent regular transaction outputs (URTOs) in our snapshot
(see Figure 5.4). We find that while 95% of the 110,149 URTOs have a flow ratio
greater than 0.9, about 0.8% of them have a flow ratio less than 0.01. We conclude
that while the flow upper bound does not violate the confidentiality of most of the
URTOs, it can constrain the amounts in some URTOs to a narrow range.

5.2 Related Work
Inputs and outputs from disparate transactions are aggregated in a MimbleWimble
block which hides the link between those involved in the same transaction. Ivan
Bogatty [47] demonstrated a practical attack to uncover links between inputs and
outputs in a Grin block by listening to transactions broadcast in the peer-to-peer
network. We can obtain tighter flow upper bounds by incorporating such link in-
formation. Due to unavailability of such link information for historical blocks, we
do not consider this information in the flow upper bound calculations described in
this paper. So our results represent a conservative estimate of the upper bound and
could be improved upon by incorporating links between inputs and outputs.

Apart from Bogatty’s attack [47], we are not aware of any other work addressing
the privacy of MimbleWimble-based cryptocurrencies. To the best of our knowledge,
our work is the first to address the confidentiality of amounts in MimbleWimble.
Bogatty’s attack is only concerned with linking inputs and outputs in a Grin block
and does not consider privacy of amounts. While Monero also has amounts hidden
by Pedersen commitments, previous work addressing privacy in Monero by Kumar
et al. [48] and Möser et al. [49] has been primarily concerned with identifying the
actual source address in the ring of addresses present in a Monero transaction. These
papers do not address the privacy of amounts in Monero, which is an interesting

5.3 Illustration of Flow Upper Bound Calculation 62

Block h1

Reward r1

Ih1
1 Oh1

1

Ih1
2 Oh1

2

Block h2

Reward r2

Ih2
1 Oh2

1

Oh2
2

Oh2
3

Block h3

Reward r3

Ih3
1 Oh3

1

Ih3
2 Oh3

2

Oh3
3

Oh3
4

Figure 5.1: llustration of flow upper bound calculation for blocks at height h1, h2, h3.

direction for future work (our approach cannot be used directly due to the source
address obfuscation in Monero).

5.3 Illustration of Flow Upper Bound

Calculation
In this section, we illustrate the flow upper bound calculation with an example.
Before proceeding, we assume that the reader is familiar with the structure of blocks
and transactions in Grin, which is also described in detail in Section 3.4.4 of Chapter
3. Consider blocks at heights h1, h2, and h3 on the Grin blockchain as shown in
Figure 5.1. Let the total fees for the block at height hi be f toti . The block reward in
block hi is then ri = r+ f toti where r = 60 grins is the block subsidy. An inter-block
arrow from an output Ohi

l to an input Ihi+1
j denotes that the input is spending the

output. An intra-block arrow from an input Ihi
j to an output Ohi

l indicates that the
input could be contributing coins to the output; however such an arrow does not
indicate that the input is definitely contributing to the output. In the absence of
linkability information, we assume any input in a block can contribute to any RTO
in the same block.

Let a(C) be the amount hidden in a commitment C. We will assume that the
first output Ohi

1 is the only coinbase output in all three blocks. Then a(Ohi
1) = ri for

i = 1, 2, 3. The coinbase output Oh1
1 is spent in block h2 via the input Ih2

1 . So we
have Ih2

1 = Oh1
1 =⇒ a(Ih2

1) = r1. The coinbase output Oh2
1 and regular transaction

output Oh2
3 are spent in block h3 via the inputs Ih3

1 and Ih3
2 respectively. So we have

Ih3
1 = Oh2

1 and Ih3
2 = Oh2

3 which implies a(Ih3
1) = r2 and a(Ih3

2) = a(Oh2
3).

The consequence of equation (3.10) in block h2 is

a(Oh2
2) + a(Oh2

3) = r1 − f tot2 . (5.1)

5.4 The Flow Graph 63

While the sum of the amounts in Oh2
2 and Oh2

3 is known, the allocation of the sum
to each output is hidden. As the sum represents an upper bound on the individual
amounts in each of the outputs, we have

a(Oh2
l) ≤ r1 − f tot2 for l = 2, 3. (5.2)

The term on the right hand side is the flow upper bound for the RTOs in block h2.
The set of donor coinbase outputs for Oh2

2 , O
h2
3 contains only Oh1

1 which contributes
r1 to the upper bound. The f tot2 term corresponds to the total fees paid on the path
from the donor coinbase output Oh1

1 to the RTOs Oh2
2 , O

h2
3 . In general, the flow

upper bound is the same for all the RTOs in the same block.
The consequence of equation (3.10) in block h3 is

a(Oh3
2) + a(Oh3

3) + a(Oh3
4)

= a(Ih3
1) + a(Ih3

2)− f tot3

= a(Oh2
1) + a(Oh2

3)− f tot3

= r2 + a(Oh2
3)− f tot3

≤ r2 + r1 − f tot2 − f tot3 ,

where the last inequality follows from equation (5.2). Once again the upper bound on
the sum of the amounts in the RTOs, yields the flow upper bound on the individual
amounts given by

a(Oh3
l) ≤ r2 + r1 − f tot2 − f tot3 for l = 2, 3, 4. (5.3)

The r2 + r1 term in the flow upper bound is due to the donor coinbase outputs
Oh1

1 , O
h2
2 and the f tot2 + f tot3 term corresponds to the total fees paid on the paths

from these donor coinbase outputs to the RTOs in block h3.

5.4 The Flow Graph
To automate the calculation of flow upper bounds, we construct a directed graph
G = (V,E) from the information available on the Grin blockchain, which we call
the flow graph. In the Grin blockchain snapshot we considered, every block had
exactly one coinbase output even though this is not mandatory.† We assume that
this condition holds in our discussion below.

Let Vbl be the set of blocks in the blockchain and let Vcb be the set of all
coinbase outputs. The set of vertices is defined as V = Vbl∪Vcb. The set of directed
edges E will capture two types of flows of coins.

†https://github.com/mimblewimble/grin/issues/689

https://github.com/mimblewimble/grin/issues/689

5.4 The Flow Graph 64

(i) For c ∈ Vcb and b ∈ Vbl, the directed edge (c, b) belongs to the edge set E if
the coinbase output c is spent by a regular transaction input in block b.

(ii) For b1, b2 ∈ Vbl, the directed edge (b1, b2) belongs to the edge set E if at least
one regular transaction output in block b1 is spent by a regular transaction
input in block b2.‡

The edge set E has no other edges. Note that the intra-block flow of coins from
inputs to outputs in the same block has not been explicitly represented in the flow
graph. This is because we are not taking linkability information about inputs and
outputs into account. For block b ∈ Vbl, Algorithm 1 generates the subgraph G(b)

s =
(V (b)

s , E(b)
s), V (b)

s ⊂ Vbl, E
(b)
s ⊂ E and computes the set R(b) ⊂ Vcb of donor coinbase

vertices. Let pred(b) denote the set of predecessors to node b.

Algorithm 1 Create subgraph for node b ∈ Vbl
1: procedure subG(b)
2: for p in pred(b) do
3: V (b)

s ← V (b)
s ∪ {p}, E(b)

s ← E(b)
s ∪ {(p, b)} // Predecessors added to subgraph

4: if p ∈ Vcb and p /∈ R(b) then // Stop if coinbase node is found

5: R(b) ← R(b) ∪ {p}
6: else // Else continue recursively

7: subG(p)

Definition 5.1 A coinbase output vertex c in G is called a donor of a block b if
there is a directed path from c to b in G. A donor of a block b is also referred to as
the donor of the regular transaction outputs in the block b.

For example, Figure 5.2 shows the subgraph generated by the donor coinbase outputs
of the block at height 1499 and the blocks which lie on paths from these coinbase
outputs to it. The square vertices represent blocks and the circular vertices represent
coinbase outputs labelled with the block height in which they were generated. Edges
denote the flow of coins. Block 1499 has 7 donors at block heights 5, 7, 9, 16, 18,
33, and 38. The flow upper bound for the RTOs in block 1499 is equal to the sum
of the block rewards of these 7 coinbase outputs minus the transaction fees paid in
the 9 blocks which lie on the paths from the 7 donors to 1499 (inclusive of 1499).

‡Note that output being spent in block b1 has to be an RTO and not a coinbase transaction
output. The flow of coins out of coinbase outputs is captured by the previous type of edge. Also
note that there can exist at most one edge between two blocks b1 and b2 as the edge existence
condition requires only that at least one RTO in block b1 be spent in block b2.

5.4 The Flow Graph 65

33

38

9

5 7

18

16

1499

1458

1469

1479

1481

1482

1489
1493

1495

Figure 5.2: Subgraph generated for block at height 1499.

Let V (h)
cb be the set of donor coinbase outputs of the block at height h. Let

V
(h)
bl be the set of blocks which lie on a directed path in the flow graph G from any

vertex in V
(h)
cb to the block at height h. The block at height h is also included in

V
(h)
bl . For a coinbase output vertex c ∈ Vcb, let reward(c) denote the block reward

(subsidy plus fees) of the block in which c appeared. For a block vertex b ∈ Vbl, let
fees(b) denote the total transaction fees paid by all the regular transactions in block
b. For a regular transaction output O in a block at height h, the flow upper bound
is given by

a(O) ≤
∑

c∈V (h)
cb

reward(c)−
∑

b∈V (h)
bl

fees(b). (5.4)

The correctness of this upper bound can be argued as follows. It is clear that

a(O) ≤
∑

c∈V (h)
cb

reward(c) (5.5)

as the total coins in O cannot exceed the sum of all possible sources of coins for
block h. Let f (h)

tot = ∑
b∈V (h)

bl
fees(b). We claim that the fees in f

(h)
tot must be paid

only from the coins minted in coinbase outputs belonging to V (h)
cb . If our claim is

true, f (h)
tot must be deducted from the upper bound as these fees are paid before the

coins reach the output O. To verify our claim, suppose coins minted in a coinbase
output c′ 6∈ V (h)

cb contributed ε coins to the fees in f
(h)
tot . Then there is a sequence

of transactions which resulted in the ε coins being deposited in a block b ∈ V
(h)
bl .

5.4 The Flow Graph 66

Figure 5.3: Plot of flow ratio vs block height. Plot of flow ratio close to 1 shown
magnified on right.

This implies c′ is a donor of this block b. As block b itself lies on a directed path
from a donor coinbase output to the block at height h, there is a directed path from
c′ to the block at height h, i.e. c′ is a donor of the block at height h. This is a
contradiction as c′ 6∈ V (h)

cb .

0.0 0.2 0.4 0.6 0.8 1.0

Flow Ratio

0%

10%

20%

30%

40%

50%

60%

70%

%
 o

f
U

T
X

O
 s

et

0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
0.00%

2.27%

4.54%

0 0.025
0.00%

1.82%

Figure 5.4: The distribution of flow ratio for outputs in the URTO set.

5.5 Results 67

5.5 Results
For our analysis, we used a snapshot of the Grin blockchain from March 17, 2020
containing 612,102 blocks. As historical blocks are not available for download from
the Grin P2P network, we were fortunate to obtain a PostgreSQL database contain-
ing the blockchain data from the administrator of the GrinExplorer website. We
used the community edition of the Neo4j graph database for the construction of the
flow graph and flow upper bound calculations.

Figure 5.3 shows scatter plots of the flow ratio as a function of the block height,
only for blocks with at least one RTO. Note that the flow ratio corresponding to a
block height is the flow ratio for all RTOs in the block at that height. We used a
step size of 10 in the block height to reduce calculation time (which still took 13.5
hours). The subplots in the left column plot the flow ratio for three block height
range of approximately 612,000. The subplots in the right column plot the flow ratio
for the same block height ranges but with y-axis ranges 0.85 to 1, 0.9 to 1, and 0.95
to 1. The left column subplots show that while the flow ratio was initially small
it had exceeded 0.9 for most blocks by block height 50,000. We found that 88% of
the blocks we considered had a flow ratio above 0.9. However, there were still block
heights with small flow ratios even at heights larger than 100,000. For instance,
about 6.6% of the blocks we considered with heights larger than 100,000 had a flow
ratio less than 0.5. The column subplots on the right reveal a jagged structure in
the scatter plots for flow ratios close to 1. While a precise explanation eludes us at
this point, we suspect that the rising edges are due to the accumulation of coins by
miners while the falling edges are due to the increase in the trivial upper bound in
the flow ratio denominator.

To get an idea of the current state of the Grin blockchain, we plot the distri-
bution of flow ratio for only unspent regular transaction outputs (URTOs) in our
snapshot in Figure 5.4. We find that while 95% of the 110,149 URTOs have a flow
ratio greater than 0.9, about 0.8% of them have a flow ratio less than 0.01. In terms
of upper bounds, we found that 983 of the URTOs have an upper bound of 1800
grins. We conclude that while the flow upper bound does not violate the confiden-
tiality of most of the URTOs, it can constrain the amounts in some URTOs to a
narrow range.

As noted earlier, we used a step size of 10 in the block height while computing
flow ratio for RTOs in blocks. We did so for two reasons: (i) Computing flow upper
bounds per block is a computationally heavy process as the block height increases,
(ii) The trend observed in flow ratio for step size 10 and step size 1 is similar. For

5.6 Conclusion 68

example, Figure 5.5 shows flow ratio for blocks in range [39000, 41000]. The top
subplot plots flow ratio for each block in the range [39000, 41000] while the bottom
subplot plots for blocks in steps of 10. Clearly, the trend is very similar in both the
subplots.

Figure 5.5: Flow ratio plot for blocks in range [39000,41000], the top and bottom
plots have steps of size 1 and 10 respectively.

5.6 Conclusion
In this chapter, we explore the question of whether the transaction graph in Grin
violates the confidentiality of amounts hidden in the Pedersen commitments corre-
sponding to regular transaction outputs. We find that the confidentiality for most
outputs is preserved if the linkability information between inputs and outputs is
ignored. As incorporating linkability information will lead to tighter upper bounds,
it is a direction worthy of more investigation. The presence of regular transaction
outputs with small upper bounds shows that the perfectly hiding property of Ped-
ersen commitments in MimbleWimble-based cryptocurrencies should be taken with
a grain of salt. We also intend to examine in future if similar analysis if possi-
ble for other cryptocurrency systems like Beam and Monero which use Pedersen
Commitments.

Appendix A

Security Proofs of RevelioBP

We present the complete security analysis of the argument of knowledge ΠRevBP

protocol in the following sections. Although the soundness and zero-knowledge
proofs for ΠRevBP have some similarities to the security proofs of the ring signature
construction in Omniring [28], they are not trivial and necessary to describe the
RevelioBP protocol completely.

A.1 Proof of Lemma 4.1
Since gw = (g′w‖g′) and g′ is generated uniformly, we need only to prove that
there is no non-trivial discrete logarithm relation between elements of g′w. We show
that it is difficult to find l, l′ ∈ Zn+3 such that (g′w)l = (g′w)l′ . Let us denote
p = (p1, p2, . . . , pn+3), l = (l1, l2, . . . , ln+3) and l′ = (l′1, l′2, . . . , l′n+3).

Further, suppose the simulator is given a discrete log problem query (g0, X)
where it wants to compute the discrete log of X with respect to g0. The simulator
picks randomly scalars λi, ρ1, ρ2 $← Zq for all i ∈ [n+3] and sets g = g0, h = gρ1 , gt =
gρ2 , and pi = Xλi . Thus, Ci = grihai = g

(ri+ρ1ai)
0 , and Ij = g

rj

t h
aj = g

(ρ2rj+aj)
0 .

(g′w)l = ((g‖gt‖C‖I−uj)w ◦ p)l

= (gwp1‖gwt p2‖Cw
1 p3‖ . . . ‖Cw

n pn+2‖I−uwj pn+3)l

= (gwp1)l1(gwt p2)l2
n+2∏
i=3

(Cw
i−2pi)li(I−uwj pn+3)ln+3

= gwl1gwl2t I
−uwln+3
j

n∏
i=1

C
wli+2
i

n+3∏
i=1

plii

= g
w(l1+l2ρ2−u(ρ2rj+aj)ln+3+

∑n

i=1((ri+ρ1ai)li+2))
0 ·X

∑3
i=1 λili

69

A.2 Proof of Theorem 1 (Perfect SHVZK) 70

Thus, we can write (g′w)l = (g′w)l′ as (g′w)(l−l′) = 1.

=⇒ g
w((l1−l′1)+(l2−l′2)ρ2−u(ρ2rj+aj)(ln+3−l′n+3))
0

g
w
∑n

i=1((ri+ρ1ai)(li+2−l′i+2))
0 ·X

∑3
i=1 λi(li−l′i) = 1.

Since l, l′ are distinct, li 6= l′i for atleast one i ∈ [n+ 3], the simulator is able to find
a non-trivial discrete log representation of 1 with respect to (g0, X) given as

w∑n+3
i=1 λi(li − l′i)

·
[(

(l1 − l′1) + (l2 − l′2)ρ2 − u(ρ2rj + aj)(ln+3 − l′n+3)
)

+
n∑
i=1

(
(ri + ρ1ai)(li+2 − l′i+2)

)]
.

�

A.2 Proof of Theorem 1 (Perfect SHVZK)
Let the verifier challenges be (u, v, w, y, z, x). Simulator S computes Î(u),gw(u,w)
as described in ΠRevBP. We will use δ(u, v, y, z) to make the dependence of δ (as
defined in Fig. 4.4) on the challenges explicit. Now, S samples the following quan-
tities uniformly from respective groups: S, T2 $← G, l, r $← ZNq τx, r $← Zq. It then
computes the remaining quantities corresponding to the ones which were sent by P

to V in ΠRevBP as follows:

t̂ = 〈l, r〉, (A.1)

T1 = (gt̂−δhτxT−x
2

2)x−1
, (A.2)

A = (h′)rS−xgl−α
w hθ

◦−1◦r−β. (A.3)

Finally, S outputs the simulated transcript (A, S, T1, T2, l, r, t̂, τx, r). Note
that since l, r are uniformly sampled from ZNq , t̂ is uniformly distributed in Zq.
T1 is also uniformly distributed in G as g, h, T2 are uniformly sampled from G and
the corresponding exponents are also uniformly distributed in Zq. From Lemma
4.1, recall that gw can also be considered as uniformly distributed in Gn+3. Thus,
A is also uniformly distributed in G since the generators as well as exponents in
the equation for computing A are uniformly distributed in the respective groups.
This implies that all the elements produced by S and those produced by ΠRevBP are
identically distributed and also satisfy the verification equations at the end of Figure
4.6. Therefore, the protocol is perfect special honest-verifier zero knowledge. �

A.3 Proof of Theorem 4.2 (Soundness) 71

A.3 Proof of Theorem 4.2 (Soundness)
To prove that ΠRevBP has witness-extended emulation, first we state a couple of
useful lemmas and a corollary. Before we proceed, we define some notation and a
new system of constraint equations CS. Let γL,γR ∈ ZNq be

γL := (γL,1‖γL,2 ‖ γL,3 ‖γL,4 ‖ γL,5 ‖ γL,6),

γR := (γR,1︸︷︷︸
1

‖γR,2︸︷︷︸
1

‖ γR,3︸ ︷︷ ︸
n

‖γR,4︸︷︷︸
1

‖ γR,5︸ ︷︷ ︸
sn

‖ γR,6︸ ︷︷ ︸
s

),

where for i ∈ {L,R}, γi,j ∈ Zq for j ∈ {1, 2, 4}, γi,3 ∈ Znq , γi,6 ∈ Zsq and for some
matrices ΓL, ΓR ∈ Zs×nq , γi,5 = vec(Γi) ∈ Zsnq . Define the constraint system CS with
parameter u such that CS(γL,γR) = 0 ⇐⇒

γL,5 ◦ γR,5 = 0sn, (A.4)

γL,1 = −〈us,γL,6〉, (A.5)

γL,2 = 〈us,γL,6〉, (A.6)

γL,3 = usΓL, (A.7)

ΓL1n = 1s, (A.8)

γL,4 = 1, (A.9)

γL,5 = −γR,5 + 1sn. (A.10)

Lemma A.1 For a fixed q > 2λ and u, v ∈ Zq, suppose there exist γL,γR ∈ ZNq
such that we have EQ(γL,γR) = 0 for sn different values of y and two different
values of v, then CS(γL,γR) = 0.

Proof : Since EQ(γL,γR) = 0 for sn different values of y, the following polynomials
in y of degree at most sn − 1 have sn different roots. Thus, all of them must be
equal to zero polynomials.

〈γL,5 ◦ γR,5,ysn〉 = 0 by (4.10),

v · γL,1 + γL,2 + (v − 1)〈γL,6,us〉 = 0 by (4.11),

〈γL,3 − usΓL,yn〉 = 0 by (4.12),

(γL,4 − 1)ys + 〈ΓL1n − 1s,ys〉 = 0 by (4.13),

〈γL,5 + γR,5 − 1sn,ysn〉 = 0 by (4.14).

Furthermore, since EQ(γL,γR) = 0 for two different values of v too, the coefficient
of v and the constant term in the second equation both must be zero. By comparing
coefficients, we get CS(γL,γR) = 0. �

A.3 Proof of Theorem 4.2 (Soundness) 72

Lemma A.2 If CS(γL,γR) = 0 then each row of ΓL is a unit vector of length n.

Proof : This follows from equations (A.4), (A.8) and (A.10). �

Corollary 1 Assuming the discrete logarithm assumption holds over G, a PPT ad-
versary cannot find a non-trivial discrete logarithm relation between the components
of the base (h′‖gw‖h)

Proof : Since (h′,h) are generated uniformly from G, it is infeasible for a PPT
adversary to compute its discrete log relation with base vector gw. Proving that a
PPT adversary cannot find a non-trivial discrete log relation between components
of gw follows from Lemma 4.1. �

With the above lemmas and the corollary, we proceed to construct an extractor
E . Let pp← Setup(λ) and stmt, wit←A(pp). The aim of E is to produce a valid
transcript and consequently the witness wit′ corresponding to that transcript. Since
E has oracle access to 〈P?(pp, stmt; wit),V(pp, stmt)〉 for any prover P?, producing
a valid transcript is trivial for E . We hence focus on how E could extract a valid
witness.

Extractor E runs P? on one value each of u, v, 2 different values of w, sn
different values of y, 5 different values of z and 3 different values of x. This results in
30× sn transcripts. E fixes the values of (w, y, z) and runs P? for x = (x1, x2, x3).
Let the transcripts for the respective x be (A, S, T1, T2, τxi

, rxi
, lxi

, rxi
, t̂xi

) for
i = 1, 2, 3. Now E will extract the discrete logarithm representations of A, S, T1, T2

using the above transcripts.

Extracting A: Choose ki ∈ Zq for i = 1, 2 such that∑2
i=1 ki = 1 and∑2

i=1 kixi = 0.
From (A.3), we have

Aki = hrxikiS−xkigki·(lxi−α)
w hki·(θ◦−1◦rxi−β) ∀i ∈ {1, 2}

2∏
i=1

Aki = h
∑

i
rxikiS−

∑
i
kixig(

∑
i
ki·lxi)−α(

∑
i
ki)

w h(
∑

i
kiθ
◦−1◦rxi)−β(

∑
i
ki)

=⇒ A = h
∑

i
rxikig(

∑
i
ki·lxi)−α

w h(
∑

i
kiθ
◦−1◦rxi)−β

=⇒ A = hr
′
Agc′L

w hc′R .

where r′A = ∑
i rxi

ki, c′L = (∑i ki · lxi
)−α and c′R =

(∑
i ki · (θ◦−1 ◦ rxi

)
)
−β. Since

we have considered the above extraction for a particular w out of the 2 of its values,

A.3 Proof of Theorem 4.2 (Soundness) 73

r′A, c′L, c′R depend on w. To show that the discrete logarithm representation of A
is independent of w, E repeats the above for a different w′. In particular, we have
A = hr

′′
Agc′′L

w′h
c′′R . Now we have two possibly different representations of A. Write

c′L = (c′L,1‖c′L,2) and c′′L = (c′′L,1‖c′′L,2) of appropriate dimensions. We have

hr
′
Agc′L

w hc′R = hr
′′
Agc′′L

w′h
c′′R =⇒

1 = hr
′
A−r

′′
A(g‖gt‖C‖Î)w·c′L,1−w

′·c′′L,1(p‖g′)c′L−c′′Lhc′R−c′′R .

Now, if r′A 6= r′′A, c′L 6= c′′L, c′R 6= c′′R, since (p‖g′‖h) is uniformly chosen after
fixing (g‖gt‖C‖Î), we would have violated the discrete logarithm assumption. Thus,
r′A = r′′A, c′L = c′′L, c′R = c′′R and letting c′L = (ξ′‖ξ′′‖ê′‖ψ′), we get

1 = (g‖gt‖C‖Î)(w−w′)·c′L

=⇒ 1 = (g‖gt‖C‖Î)c′L since w 6= w′

=⇒ 1 = gξ
′ · gξ

′′

t ·Cê′ · Îψ′ . (A.11)

We will use equation (A.11) in the last part of the proof.

Extracting S: E samples some k1, k2 ∈ Zq such that ∑i ki = 0 and ∑i kixi = 1.
From (A.3), we have

Sxi = hrxiA−1glxi−α
w hθ

◦−1◦rxi−β ∀i ∈ {1, 2}

2∏
i=1

Skixi = h
∑

i
kirxiA−

∑
i
kig(

∑
i
ki·lxi)−(

∑
i
ki)α

w h(
∑

i
ki·θ◦−1◦rxi)−(

∑
i
ki)β

S = hr
′
Sg
∑

i
ki·lxi

w h
∑

i
ki·θ◦−1◦rxi (A.12)

=⇒ S = hr
′
Sgs′L

w hs′R (A.13)

For a fixed w, the extracted A, S hold for all possible (x, y, z) because otherwise,
the discrete log assumption would be violated owing to Corollary 1 as a non-trivial
discrete logarithm representation of 1 with respect to the base (h′‖gw‖h) would be
known.

Substituting these expressions of A, S in the expressions for l, r from the pro-
tocol, we get

l′x = c′L +α+ s′L · x ∈ ZNq ,

r′x = θ ◦ (c′R + s′R · x) + µ ∈ ZNq .

A.3 Proof of Theorem 4.2 (Soundness) 74

These vectors must also hold for all (x, y, z) because if that was not the
case, then we would know a non-trivial discrete logarithm representation of 1 with
respect to the base (h′‖gw‖h) due to Corollary 1.

Extracting T1, T2: E chooses ki ∈ Zq for i ∈ {1, 2, 3} such that ∑3
i=1 ki = 0,∑3

i=1 kixi = 1 and ∑3
i=1 kix

2
i = 0. Thus, we have

T1 =
3∏
i=1

T kixi
1 = g

∑3
i=1 ki t̂xih

∑3
i=1 kiτxi = gt

′
1hr

′
1 .

Similarly, to extract T2, E chooses k′i ∈ Zq for i ∈ {1, 2, 3} such that ∑3
i=1 k

′
i =

0, ∑3
i=1 k

′
ixi = 0 and ∑3

i=1 k
′
ix

2
i = 1. Thus, we have

T2 =
3∏
i=1

T
k′ix

2
i

2 = g
∑3

i=1 k
′
i t̂xih

∑3
i=1 k

′
iτxi = gt

′
2hr

′
2 .

Again, the above expressions for T1, T2 hold for all x, or otherwise we would
have obtained a non-trivial discrete logarithm representation of 1 base (g‖h)
violating the discrete logarithm assumption. Therefore, we have obtained t′1, t′2 ∈ Zq
as the exponents of g in the extracted T1 and T2 respectively.

Extracting witness: E parses c′L as below and outputs the witness wit′

c′L = (ξ′‖ξ′′‖ê′‖ψ′‖vec(E′)‖r′),

wit′ = (r′, e′i1 , . . . e
′
is).

Finally, what remains to show is that the extracted witness is a valid witness
to the statement stmt. Using the extracted t′1, t′2 we have

t′x = δ(u, v, y, z) + t′1x+ t′2x
2.

for all (x, y, z) or else we would violate the DL assumption by having a DL relation
between g, h. Let

t′0 := δ(u, v, y, z),

l′(X) := c′L +α+ s′L ·X,

r′(X) := θ ◦ (c′R + s′R ·X) + µ,

t′(X) := 〈l′(X), r′(X)〉.

Now, the following polynomial, for all (y, z), has at least 3 roots and hence must be
a zero polynomial.

t′(X)− (t′0 + t′1X + t′2X
2).

A.3 Proof of Theorem 4.2 (Soundness) 75

We have t′(X) = t′0 + t′1X + t′2X
2 and particularly, t′(0) = t′0. The latter two

quantities are given by

t′0 = z3 · 〈1s+1,ys+1〉+ 〈α,µ〉+ 〈1N ,ν〉, (A.14)

t′(0) = 〈c′L,θ ◦ c′R〉+ 〈c′L,µ〉+ 〈c′R,θ ◦α〉+ 〈α,µ〉

= 〈c′L,θ ◦ c′R〉+ 〈c′L, ζ〉+ 〈c′L,ν〉+ 〈c′R,ν〉+ 〈α,µ〉

= 〈c′L,θ ◦ c′R〉+ 〈c′L, ζ〉 + 〈c′L + c′R,ν〉+ 〈α,µ〉, (A.15)

where ζ = ∑3
i=1 z

ivi. Equations (A.14) and (A.15) imply

z3〈1s+1,ys+1〉 = 〈c′L,θ ◦ c′R〉+ 〈c′L, ζ〉+ 〈c′L − c′R − 1t,ν〉+ 〈α,µ〉

= 〈c′L,v0 ◦ c′R〉+
3∑
i=1

zi〈c′L,vi〉+ z4〈c′L + c′R − 1N ,v4〉.

The above equation holds for 5 different values of z. As the equation involves
a degree 4 polynomial, the coefficients on both sides must be equal. This implies
that EQ(c′L, c′R) = 0 for sn different values of y and 2 values of v. By Lemma A.1,
we have CS(c′L, c′R) = 0. Further, Lemma A.2 implies that each row vector of E′ is
a unit vector of length n. Let vec(E′) = (e′i1 , . . . , e′is) and write

ξ′ = −〈us, r′〉, ξ′′ = 〈us, r′〉, ψ′ = 1, ê′ = vsE′.

Also, let i′1, i
′
2, . . . , i

′
s be the indices of the non-zero numbers in vector

ê′. We now show that these exponents computed from the extracted witness
(r′, e′i1 , e′i2 , . . . , e′is) is correct. From (A.11), we have

1 = gξ
′ · gξ

′′

t ·Cê′ · Îψ′

= g−〈u
s,r′〉 · g〈u

s,r′〉
t ·

 s∏
j=1

Cuj−1·e′ij

 ·
 s∏
j=1

I−u
j−1

j


=

s∏
j=1

(
g−r

′
jg
r′j
t C

e′ij I−1
j

)uj−1

.

The final equality can be interpreted as an evaluation of an s-degree polynomial
in the exponent at a random point u. The probability of such an evaluation being
zero for a non-zero polynomial is bounded by s+1

q
, which is negligible since q > 2λ

by Schwartz-Zippel lemma. Thus, we assume that the polynomial is always zero.
This implies that for all j ∈ [s], g−r′jgr

′
j

t C
e′ij I−1

j = 1. Now the amount a′j can be
calculated (after extracting (r′j, e′ij)) by an honest PPT prover (or extractor) since
the amount lies in the finite range {0, 1, . . . , 264 − 1}. Therefore, wit′ is a valid
witness corresponding to the statement stmt for the language LRevBP. �

A.4 Proof of Theorem 4.3 (Output Privacy) 76

A.4 Proof of Theorem 4.3 (Output Privacy)
We will prove Theorem 4.3 by contradiction. We will prove that if there is a PPT
distinguisher D who can succeed in the OutputPriv experiment with probability at
least 1

2 + 1
p(λ) for a polynomial p, then we can construct a PPT adversary E who can

solve the generalized DDH problem [50] with success probability at least 1
2 + 1

2p(λ) .
This is a contradiction as the generalized DDH problem is equivalent to the DDH
problem and the latter is assumed to be hard in the group G.

Let E be an adversary who is tasked with solving the generalized DDH problem
given a tuple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈ G2f(λ)+2. E wants to distinguish
between the following two cases:

• In the tuple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈ G2f(λ)+2, gl $← G, ul $← G ∀l =
0, 1, 2, . . . , f(λ).

• In the tuple (g0, g1, . . . , gf(λ), u0, u1, . . . , uf(λ)) ∈ G2f(λ)+2, gl $← G, ul = grl ∀l =
0, 1, 2, . . . , f(λ) where r $← Zq.

Let d = 1 and d = 2 denote the above two cases, which are assumed to be
equally likely. E needs to output its estimate d′ of d. To estimate d correctly, E

constructs a valid input to the OutputPriv distinguisher D as follows:

1. E sets g = g0 and chooses h $← G. It also chooses amounts a1, a2 $← V .

2. E chooses an integer b uniformly from {1, 2}. It sets Cb = u0h
ab and chooses

the other output uniformly from G. For l = 1, 2, . . . , f(λ), E sets the tags
Il = ulh

ab .

3. For l = 1, 2, . . . , f(λ), E creates the lth argument ΠRevBP using the PPT simu-
lator S in Appendix A.3 with gt = gl, C = (C1, C2), and I = (Il).

4. E feeds the computed quantities to D and gets

b′ = D

({
Ij,Π

j
RevBP, gj

}f(λ)

j=1
, C1, C2, a1, a2

)
.

5. If b′ = b, then E sets d′ = 2. Otherwise, d′ = 1.

The motivation behind this construction is that when D estimates b correctly
it could be exploiting some structure in the inputs given to it.

A.4 Proof of Theorem 4.3 (Output Privacy) 77

• When d = 1, the u0, u1, . . . , uf(λ) components of the tuple given to E are uniformly
distributed. This makes the distribution of (I1, I2, . . . , If(λ), C1, C2) identical for
both b = 1 and b = 2. This in turn makes the distributions of the simulated
arguments Π1

RevBP, . . . ,Π
f(λ)
RevBP identical for both values of b. Thus D can only

estimate b with a success probability of 1
2 . Thus Pr [b′ = b | d = 1] = 1

2 .

• When d = 2, the ul = grl for all l = 0, 1, . . . , f(λ). By construction, the vector
(I1, I2, . . . , If(λ), C1, C2) has a distribution which is different for b = 1 and b = 2.
More importantly, the input E feeds to D is identically distributed to the input
D receives in the OutputPriv experiment. If D can estimate b correctly, then E

bets on the distinguisher D’s ability to win in the OutputPriv experiment and
concludes that the tuple it received is a generalized DDH tuple.

Clearly, if adversary D is PPT then so is E . Suppose there is a PPT distin-
guisher D which succeeds in the OutputPriv experiment with probability of suc-
cess which is lower bounded by 1

2 + 1
p(λ) where p is a polynomial. Thus we have

Pr [b′ = b | d = 2] ≥ 1
2 + 1

p(λ) .

The success probability of E is given by

Pr[d′ = d] = 1
2 Pr[d′ = 1|d = 1] + 1

2 Pr[d′ = 2|d = 2],

= 1
2 Pr[b′ 6= b | d = 1] + 1

2 Pr[b′ = b | d = 2],

≥ 1
2 ·

1
2 + 1

2 ·
(

1
2 + 1

p(λ)

)
= 1

2 + 1
2p(λ) .

Thus, E succeeds in solving the generalized DDH problem with a probability
non-negligibly larger than 1

2 . As a PPT adversary who can solve the generalized
DDH problem is equivalent to a PPT adversary solving the classical DDH problem
[50], we get a contradiction. �

References

[1] A. Dutta and S. Vijayakumaran, “Revelio: A MimbleWimble proof of re-
serves protocol,” in 2019 Crypto Valley Conference on Blockchain Technology
(CVCBT), June 2019, pp. 7–11.

[2] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell, “Bul-
letproofs: Short proofs for confidential transactions and more,” in 2018 IEEE
Symposium on Security and Privacy (SP), May 2018, pp. 315–334.

[3] S. Nakamoto. (2008) Bitcoin: A peer-to-peer electronic cash system. [Online].
Available: http://bitcoin.org/bitcoin.pdf

[4] M. Conti, E. S. Kumar, C. Lal, and S. Ruj, “A survey on security and privacy
issues of bitcoin,” IEEE Communications Surveys & Tutorials, vol. 20, pp. 3416–
3452, 2018.

[5] N. v. Saberhagen, “CryptoNote v 2.0,” White paper, 2013. [Online]. Available:
https://cryptonote.org/whitepaper.pdf

[6] E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and
M. Virza, “Zerocash: Decentralized anonymous payments from bitcoin,” in 2014
IEEE Symposium on Security and Privacy, 2014, pp. 459–474.

[7] “Grin project website.” [Online]. Available: https://grin-tech.org/

[8] “Beam project website.” [Online]. Available: https://www.beam.mw/

[9] A. Poelstra, “Mimblewimble,” 2016. [Online]. Available: https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

[10] H. Natarajan, S. K. Krause, and H. L. Gradstein, “Distributed
Ledger Technology (DLT) and blockchain (English),” FinTech note;
no. 1. Washington, D.C. : World Bank Group, 2017. [Online].

78

http://bitcoin.org/bitcoin.pdf
https://cryptonote.org/whitepaper.pdf
https://grin-tech.org/
https://www.beam.mw/
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf

References 79

Available: http://documents.worldbank.org/curated/en/177911513714062215/
Distributed-Ledger-Technology-DLT-and-blockchain

[11] K. Gary C., “An Overview of Cryptography,” Handbook on Local Area
Networks, September 1998. [Online]. Available: https://www.garykessler.net/
library/crypto.html

[12] C. David, “Blind Signatures for Payments,” Springer-Verlag, 1982. [Online].
Available: http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/
Chaum.BlindSigForPayment.1982.PDF

[13] IDEX blog. A complete list of cryptocurrency exchange hacks [updated].
[Accessed 27-MAY-2020]. [Online]. Available: https://blog.idex.io/all-posts/
a-complete-list-of-cryptocurrency-exchange-hacks-updated

[14] R. A. Musiala, T. M. Goody, V. Reynolds, L. Tenery, M. Mc-
Grath, C. Rowland, and S. Sekhri, “Cryptocurrencies: Forensic
techniques to meet the challenge of new fraud and corruption risks,”
Springer-Verlag, 2020. [Online]. Available: https://www.aicpa.org/
content/dam/aicpa/interestareas/forensicandvaluation/newsandpublications/
downloadabledocuments/eye-on-fraud-cryptocurrency-202003.pdf

[15] G. G. Dagher, B. Bünz, J. Bonneau, J. Clark, and D. Boneh, “Provisions:
Privacy-preserving proofs of solvency for Bitcoin exchanges,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security
(ACM CCS), New York, NY, USA, 2015, pp. 720–731.

[16] A. Dutta and S. Vijayakumaran, “MProve: A proof of reserves protocol for
Monero exchanges,” in 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), June 2019, pp. 330–339.

[17] K. Chalkias, K. Lewi, P. Mohassel, and V. Nikolaenko, “Distributed auditing
proofs of liabilities,” Cryptology ePrint Archive, Report 2020/468, 2020, https:
//eprint.iacr.org/2020/468.

[18] S. Roose, “Standardizing Bitcoin Proof of Reserves,” Blockstream Blog
Post, Feb. 2018. [Online]. Available: https://blockstream.com/2019/02/04/
standardizing-bitcoin-proof-of-reserves/

[19] Wikipedia contributors. Mt. Gox —Wikipedia, the free encyclopedia. [Accessed
10-JUNE-2020]. [Online]. Available: https://en.bitcoin.it/wiki/Mt._Gox

http://documents.worldbank.org/curated/en/177911513714062215/Distributed-Ledger-Technology-DLT-and-blockchain
http://documents.worldbank.org/curated/en/177911513714062215/Distributed-Ledger-Technology-DLT-and-blockchain
https://www.garykessler.net/library/crypto.html
https://www.garykessler.net/library/crypto.html
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://blog.idex.io/all-posts/a-complete-list-of-cryptocurrency-exchange-hacks-updated
https://www.aicpa.org/content/dam/aicpa/interestareas/forensicandvaluation/newsandpublications/downloadabledocuments/eye-on-fraud-cryptocurrency-202003.pdf
https://www.aicpa.org/content/dam/aicpa/interestareas/forensicandvaluation/newsandpublications/downloadabledocuments/eye-on-fraud-cryptocurrency-202003.pdf
https://www.aicpa.org/content/dam/aicpa/interestareas/forensicandvaluation/newsandpublications/downloadabledocuments/eye-on-fraud-cryptocurrency-202003.pdf
https://eprint.iacr.org/2020/468
https://eprint.iacr.org/2020/468
https://blockstream.com/2019/02/04/standardizing-bitcoin-proof-of-reserves/
https://blockstream.com/2019/02/04/standardizing-bitcoin-proof-of-reserves/
https://en.bitcoin.it/wiki/Mt._Gox

References 80

[20] C. Decker, J. Guthrie, J. Seidel, and R. Wattenhofer, “Making bitcoin exchanges
transparent,” in 20th European Symposium on Research in Computer Security
(ESORICS), 2015, pp. 561–576.

[21] “CoinMarketCap Markets.” [Online]. Available: https://coinmarketcap.com/
#markets

[22] A. Wood, “QuadrigaCX Wallets Have Been Empty, Unused Since April 2018,
Ernst and Young Finds,” Mar. 2019. [Online]. Available: https://cointelegraph.
com/news/report-quadrigacx-wallets-have-been-empty-unused-since-april

[23] “Ernst & Young Inc — Third Report of the Monitor,” Mar. 2019.
[Online]. Available: https://documentcentre.eycan.com/eycm_library/
Quadriga%20Fintech%20Solutions%20Corp/English/CCAA/1.%20Monitor%
27s%20Reports/4.%20Third%20Report%20of%20the%20Monitor/Third%
20Report%20of%20the%20Monitor%20dated%20March%201,%202019.pdf

[24] A. H. Koblitz, N. Koblitz, and A. Menezes, “Elliptic curve cryptography: The
serpentine course of a paradigm shift,” Journal of Number Theory, vol. 131,
no. 5, pp. 781 – 814, 2011, elliptic Curve Cryptography. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022314X09000481

[25] S. Vijayakumaran. (2017) An introduction to Bitcoin, 2017. [Online]. Available:
https://www.ee.iitb.ac.in/~sarva/bitcoin/bitcoin-notes-v0.1.pdf

[26] P. Hess, “Sec 2: Recommended elliptic curve domain parameters,” 2000.

[27] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2, pp.
120–126, Feb. 1978. [Online]. Available: https://doi.org/10.1145/359340.359342

[28] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and
J. Wang, “Omniring: Scaling private payments without trusted setup,” in Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communica-
tions Security, November 2019, pp. 31–48.

[29] J.-J. Quisquater, M. Quisquater, M. Quisquater, M. Quisquater, L. Guillou,
M. A. Guillou, G. Guillou, A. Guillou, G. Guillou, and S. Guillou, “How to
explain zero-knowledge protocols to your children,” in Advances in Cryptology
— CRYPTO’ 89 Proceedings, G. Brassard, Ed. New York, NY: Springer New
York, 1990, pp. 628–631.

https://coinmarketcap.com/#markets
https://coinmarketcap.com/#markets
https://cointelegraph.com/news/report-quadrigacx-wallets-have-been-empty-unused-since-april
https://cointelegraph.com/news/report-quadrigacx-wallets-have-been-empty-unused-since-april
https://documentcentre.eycan.com/eycm_library/Quadriga%20Fintech%20Solutions%20Corp/English/CCAA/1.%20Monitor%27s%20Reports/4.%20Third%20Report%20of%20the%20Monitor/Third%20Report%20of%20the%20Monitor%20dated%20March%201,%202019.pdf
https://documentcentre.eycan.com/eycm_library/Quadriga%20Fintech%20Solutions%20Corp/English/CCAA/1.%20Monitor%27s%20Reports/4.%20Third%20Report%20of%20the%20Monitor/Third%20Report%20of%20the%20Monitor%20dated%20March%201,%202019.pdf
https://documentcentre.eycan.com/eycm_library/Quadriga%20Fintech%20Solutions%20Corp/English/CCAA/1.%20Monitor%27s%20Reports/4.%20Third%20Report%20of%20the%20Monitor/Third%20Report%20of%20the%20Monitor%20dated%20March%201,%202019.pdf
https://documentcentre.eycan.com/eycm_library/Quadriga%20Fintech%20Solutions%20Corp/English/CCAA/1.%20Monitor%27s%20Reports/4.%20Third%20Report%20of%20the%20Monitor/Third%20Report%20of%20the%20Monitor%20dated%20March%201,%202019.pdf
http://www.sciencedirect.com/science/article/pii/S0022314X09000481
https://www.ee.iitb.ac.in/~sarva/bitcoin/bitcoin-notes-v0.1.pdf
https://doi.org/10.1145/359340.359342

References 81

[30] L. Mathieson. (2013) The difference between soundness and completeness
. [Online]. Available: https://philosophy.stackexchange.com/questions/6992/
the-difference-between-soundness-and-completeness

[31] “Introduction to MimbleWimble and Grin.” [Online]. Available: https:
//github.com/mimblewimble/grin/blob/master/doc/intro.md

[32] J. Camenisch and M. Stadler, “Proof systems for general statements about
discrete logarithms,” Dept. of Computer Science, ETH Zürich, Tech. Rep. 260,
Mar 1997.

[33] T. E. Jedusor, “Mimblewimble,” 2016. [Online]. Available: https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[34] Grinscan website. Date accessed: June 7, 2020. [Online]. Available:
https://grinscan.net/charts

[35] S. Bagad and S. Vijayakumaran, “Performance Trade-offs in Design of Mim-
blewimble Proofs of Reserves,” in IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), 2020.

[36] “constants.rs — Grin rust-secp256k1-zkp GitHub repository.” [Online]. Avail-
able: https://github.com/mimblewimble/rust-secp256k1-zkp/blob/master/src/
constants.rs

[37] S. Noether and A. Mackenzie, “Ring confidential transactions,” Ledger, vol. 1,
pp. 1–18, 2016.

[38] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identi-
fication and signature problems,” in Advances in Cryptology — CRYPTO’ 86,
A. M. Odlyzko, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp.
186–194.

[39] Revelio simulation code. [Online]. Available: https://github.com/avras/revelio

[40] RevelioBP simulation code. [Online]. Available: https://github.com/suyash67/
RevelioBP

[41] “MimbleWimble.” [Online]. Available: https://scalingbitcoin.org/papers/
mimblewimble.txt

https://philosophy.stackexchange.com/questions/6992/the-difference-between-soundness-and-completeness
https://philosophy.stackexchange.com/questions/6992/the-difference-between-soundness-and-completeness
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://github.com/mimblewimble/grin/blob/master/doc/intro.md
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://grinscan.net/charts
https://github.com/mimblewimble/rust-secp256k1-zkp/blob/master/src/constants.rs
https://github.com/mimblewimble/rust-secp256k1-zkp/blob/master/src/constants.rs
https://github.com/avras/revelio
https://github.com/suyash67/RevelioBP
https://github.com/suyash67/RevelioBP
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt

References 82

[42] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable se-
cret sharing,” in Advances in Cryptology — CRYPTO ’91. Springer, 1992, pp.
129–140.

[43] S. Bagad and S. Vijayakumaran, “On the Confidentiality of Amounts in Grin,”
in Crypto Valley Conference on Blockchain Technology (CVCBT), 2020.

[44] “GrinExplorer website.” [Online]. Available: https://grinexplorer.net/

[45] “Grin Forum Thread on Grinnode.live.” [Online]. Available: https://forum.
grin.mw/t/https-grinnode-live-public-grin-api-and-sync-service/6671/11

[46] “The Coinbase Maturity Rule.” [Online]. Available: https://github.com/
mimblewimble/grin/blob/master/doc/coinbase_maturity.md

[47] Linking 96% of Grin Transactions. [Online]. Available: https://github.com/
bogatyy/grin-linkability

[48] A. Kumar, C. Fischer, S. Tople, and P. Saxena, “A traceability analysis of Mon-
ero’s blockchain,” in European Symposium on Research in Computer Security –
ESORICS 2017, 2017, pp. 153–173.

[49] M. Möser, K. Soska, E. Heilman, K. Lee, H. Heffan, S. Srivastava, K. Hogan,
J. Hennessey, A. Miller, A. Narayanan, and N. Christin, “An empirical analysis
of traceability in the Monero blockchain,” Proceedings on Privacy Enhancing
Technologies, vol. 2018, no. 3, pp. 143–163, 2018.

[50] F. Bao, R. H. Deng, and H. Zhu, “Variations of Diffie-Hellman problem,” in
Information and Communications Security, 2003, pp. 301–312.

https://grinexplorer.net/
https://forum.grin.mw/t/https-grinnode-live-public-grin-api-and-sync-service/6671/11
https://forum.grin.mw/t/https-grinnode-live-public-grin-api-and-sync-service/6671/11
https://github.com/mimblewimble/grin/blob/master/doc/coinbase_maturity.md
https://github.com/mimblewimble/grin/blob/master/doc/coinbase_maturity.md
https://github.com/bogatyy/grin-linkability
https://github.com/bogatyy/grin-linkability

	Abstract
	List of Publications
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	What is a Blockchain?
	Decentralized Ledger

	Notion of Privacy on a Blockchain
	Cryptocurrency Exchanges
	Hacks and Frauds of Exchanges

	Proof of Solvency
	Proof of Reserves

	Organization of the Thesis

	Cryptographic Preliminaries
	Notation
	Basics of Elliptic Curves
	Point Addition in Elliptic Curves

	Cryptographic Assumptions
	Cryptographic Commitments
	Zero-Knowledge Arguments of Knowledge
	Zero-Knowledge Arguments
	Defining Zero-Knowledge Arguments of Knowledge

	Literature Survey
	Improved Inner-Product Argument
	Inner-Product Argument
	Recursive Inner-Product Argument

	Bulletproofs
	Omniring
	Main Idea

	Overview of MimbleWimble & Grin
	Outputs in Grin
	Transactions in Grin
	Transaction Aggregation
	Grin Blocks

	Revelio - A MimbleWimble Proof of Reserves Protocol
	Proving Statements About Discrete Logarithms
	Main Idea of Revelio
	Drawbacks of Revelio

	RevelioBP - MimbleWimble Proof of Reserves Protocol with Short Proofs
	Introduction
	Our Contribution
	Outputs in MimbleWimble
	From Omniring to RevelioBP
	RevelioBP Proof of Reserves Protocol
	Proof Generation
	Proof Verification

	ZK Argument of Knowledge RevBP
	Building Inner Product Relation

	Security Properties of RevelioBP
	Inflation Resistance
	Collusion Resistance
	Output Privacy

	Performance
	Scalability and Performance Trade-off

	Conclusion

	Confidentiality of Amounts in Grin
	Our Contribution
	Related Work
	Illustration of Flow Upper Bound Calculation
	The Flow Graph
	Results
	Conclusion

	Security Proofs of RevelioBP
	Proof of Lemma 4.1
	Proof of Theorem 1 (Perfect SHVZK)
	Proof of Theorem 4.2 (Soundness)
	Proof of Theorem 4.3 (Output Privacy)

	References

